1. Find the values of a and b, if the limit 
$$\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-(1+ax)}{x^2} = b$$
 exists. (5 points)

2. Let 
$$F(x, y) = y - x^y = 0$$
. Find  $\frac{dy}{dx}$ . (5 points)

3. Sketch the graph of  $y = \frac{x}{x^2 + 1}$ . Label the intercepts, relative extrema, points of inflection, and asymptotes. Then state the domain of the function. (10 points)

4. Evaluate the definite integral 
$$\int_{-1}^{e} \ln |x| dx$$
. (5 points)

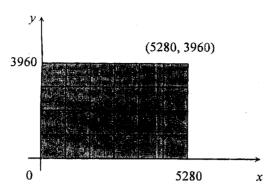
- 5. After test-marketing a new menu item, a fast-food restaurant predicts that sales of a new item will grow according to the model  $\frac{dS}{dt} = \frac{2t}{(t+4)^2}$ , where t is the time in weeks and S is the sales in thousands of dollars. Find the sales of the menu item at 10 weeks. [Hints:  $\ln 2 = 0.6931$ ,  $\ln 3 = 1.0986$ ,  $\ln 5 = 1.6094$ ,  $\ln 7 = 1.9459$ ,  $\ln 11 = 2.3978$ .] (10 points)
- 6. Examine the function  $f(x, y) = -\frac{4x}{x^2 + y^2 + 1}$  for the relative exterma and saddle points.

  (10 points)
- 7. An investor is considering three different stocks in which to invest \$20,000. The average annual dividends for the stocks are

General Motors (G) 3.0%

Eastman Kodak (E) 2.3%

Kelly Services, Inc. (K) 2.5%


The amount invested in Eastman Kodak must follow the equation

$$2000K - 2000G + E^2 = 0$$

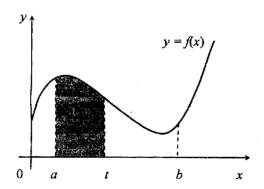
How much should be invested in each stock to yield a maximum of dividends? (10 points)

8. Find the value of a and b such the linear model f(x) = a + bx has a minimum sum of the squared errors for the points (-3, 0), (-1, 1), (0, 2), (2, 3). (10 points)

9. The average value of real estate (in dollars per square foot) for a rectangular section of a city is given by  $f(x, y) = 2.5x^{3/2}y^{3/4}$  (see figure). Find the average value of real estate for this section. (5 points)



10. The ordering and transportation cost C of the components used in manufacturing a product is


$$c = 100 \left( \frac{200}{x^2} + \frac{x}{x + 30} \right), x \ge 1$$

where C is measured in thousands of dollars and x is the order size in hundreds. Find the order size that minimizes the cost. [Hint: Use Newton's Method.] (10 points)

11. Use a sixth-degree Taylor polynomial centered at zero to approximate the definite integral  $\int_0^{1/2} e^{-x^2} dx$ . (5 points)

12. A large corporation starts at time t=0 to invest part of its receipts at a rate of P dollars per year in a fund for future corporate expansion. Assume that the fund earns r percent interest per year compounded continuously. So, the rate of growth of the amount A in the fund is given by  $\frac{dA}{dt} = rA + P$ , where A = 0 when t = 0. Solve this differential equation for A as a function of t. (5 points)

13. Let A(t), known as the area function, denote the area of the region R under the graph of a nonnegative function y = f(x) from x = a to x = t, where  $a \le t \le b$  (see figure). Use the concept of area function to demonstrate the plausibility of the fundamental theorem of calculus for the case where f is nonnegative on an interval [a, b]. (10 points)

