(-)

Let
$$V_i = \left[\begin{bmatrix} a \\ b \end{bmatrix} \right] b > 0$$
, $V_2 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \right] a - b + c = 0$.

Are Vi and Vz subspaces of R3? Explain. [10%]

- =. Let A be a 4x5 matrix.
 - (a) If the rank of A is 3, what is the dimension of its column space? Explain. [6%]
 - (b) If the rank of A is 3, what is the dimension of the solution space of the homogeneous system Ax=0? Explain. [6%]

政治

 \equiv . Let L: $R^4 \rightarrow R^3$ be defined by

$$L\left(\begin{bmatrix} a_1\\ a_2\\ a_3\\ a_4 \end{bmatrix}\right) = \begin{bmatrix} a_1+a_2\\ a_3+a_4\\ a_1+a_3 \end{bmatrix}$$

- (a) Is L a linear transformation? Justify your answer. [6%]
- (b) Find a basis for Ker L. [6%]
- (c) Find a basis for range L. [6%]

- (12%) When we encode members of Z₂^m into Z₂ⁿ; such a code is called an (m, n) code. The first m components of a code word are the information digits, and the last r (r = n m) components are the check digits. Please answer (1) which of the following are perfect codes, and (2) which are single-error correcting codes?
 - (a) (12, 7) (b) (15, 11) (c) (5, 3)
- 2. (12%) How many nonnegative integer solutions are there to the inequality $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 < 10$.
- 3. (12%) Please solve the recurrence relation $\begin{cases} a_{n+2} = 4 \ a_{n+1} 4 a_n, \ n \ge 0 \\ a_0 = 1, \ a_1 = 3 \end{cases}$
- 4. (12%) Let $f: S \to T$, and $g: T \to U$. Then the composition function, $g \circ f$, is a function from S to U defined by $(g \circ f)(s) = g(f(s))$. Consider the following statements, which are false statement(s)?
 - (a) If f is one-to-one then $f \circ g$ is one-to-one.
 - (b) If f and g are onto then $f \circ g$ is onto.
 - (c) If f and g are one-to-one and onto then f o g is one-to-one and onto.
 - (d) If $f \circ g$ is one-to-one then f is one-to-one.
 - (e) If $f \circ g$ is one-to-one then g is one-to-one.
 - (f) If $f \circ g$ is onto then f is onto.
 - (g) If $f \circ g$ is onto then g is onto.
- 5. (12%) Please (1) design a minimum rail network connecting the seven cities, shown in the mileage chart below, (2) show sum of the network.

	City-1	City-2	City-3	City-4	City-5	City-6	City-7
City-1	0	500	400	600	100	550	300
City-2	500	0	620	1100	450	1000	700
City-3	400	620	0	525	520	900	420
City-4	600	1100	525	0	700	430	200
City-5	100	450	520	700	0	490	350
City-6	550	1000	900	430	490	0	330
City-7	300	700	420	200	350	330	0