政治大學圖書館

- (12%) When we encode members of Z<sub>2</sub><sup>m</sup> into Z<sub>2</sub><sup>n</sup>; such a code is called an (m, n) code. The first m components of a code word are the information digits, and the last r (r = n m) components are the check digits. Please answer (1) which of the following are perfect codes, and (2) which are single-error correcting codes?
  - (a) (12, 7) (b) (15, 11) (c) (5, 3)
- 2. (12%) How many nonnegative integer solutions are there to the inequality  $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 < 10$ .
- 3. (12%) Please solve the recurrence relation  $\begin{cases} a_{n+2}=4 \ a_{n+1}-4a_n, \ n\geq 0 \\ a_0=1, \ a_1=3 \end{cases}$
- 4. (12%) Let  $f: S \to T$ , and  $g: T \to U$ . Then the composition function,  $g \circ f$ , is a function from S to U defined by  $(g \circ f)(s) = g(f(s))$ . Consider the following statements, which are false statement(s)?
  - (a) If f is one-to-one then  $f \circ g$  is one-to-one.
  - (b) If f and g are onto then  $f \circ g$  is onto.
  - (c) If f and g are one-to-one and onto then  $f \circ g$  is one-to-one and onto.
  - (d) If  $f \circ g$  is one-to-one then f is one-to-one.
  - (e) If  $f \circ g$  is one-to-one then g is one-to-one.
  - (f) If  $f \circ g$  is onto then f is onto.
  - (g) If  $f \circ g$  is onto then g is onto.
- 5. (12%) Please (1) design a minimum rail network connecting the seven cities, shown in the mileage chart below, (2) show sum of the network.

|        | City-1 | City-2 | City-3 | City-4 | City-5 | City-6 | City-7 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| City-1 | 0      | 500    | 400    | 600    | 100    | 550    | 300    |
| City-2 | 500    | 0      | 620    | 1100   | 450    | 1000   | 700    |
| City-3 | 400    | 620    | 0      | 525    | 520    | 900    | 420    |
| City-4 | 600    | 1100   | 525    | 0      | 700    | 430    | 200    |
| City-5 | 100    | 450    | 520    | 700    | 0      | 490    | 350    |
| City-6 | 550    | 1000   | 900    | 430    | 490    | 0      | 330    |
| City-7 | 300    | 700    | 420    | 200    | 350    | 330    | 0      |

## (機率部分的題目每一題都需要寫出計算過程)

- (12%) 令 f(x)=cx(1-x)是 random variable X 的 probability density function, 其中 c 為一個常數。若 X 的分佈區間是[0,1], 回答下列問題。
  - 1.1 (4%) 求 c 的值
  - 1.2 (4%) 令 Y=3X+2, 求 E[Y] 的值
  - 1.3 (4%) 求 VAR[X]的值

(13%) 已知變數 X和 Y 之間的關係是  $X=aY^b$ ,假定我們已經獲知在  $Y=y_i$  時, $X=x_i$ ,i=1,2,3,4 四組數據,利用這四組抽樣數據求出和表示 a 和 b 的值。

(15%) 假定莊家有甲和乙兩個骰子,甲乙兩骰子擲出數字的機率如下表。在任一賭局中莊家只會使用甲乙兩骰子的其中一個,並且會先試擲其所使用的骰子三次。在某一次賭局中,莊家在試擲時擲出1,4和6。若我們假設每一次試擲均為獨立事件,並且假設莊家使用甲乙兩個骰子的機率各為0.6和0.4,在該次賭局中,莊家使用甲乙兩骰子的機率各為多少?

| 數字  | 1   | 2   | 3   | 4   | 5   | 6   |
|-----|-----|-----|-----|-----|-----|-----|
| 甲骰子 | 0.1 | 0.2 | 0.2 | 0.1 | 0.3 | 0.1 |
| 乙骰子 | 0.2 | 0.1 | 0.1 | 0.3 | 0.1 | 0.2 |