國立政治大學九十 八 學年度研究所 碩士班入學考試命題紙

第 | 頁,共3 頁

考試科目 作業系統 所別 資訊科學系 考試時間 3月14日第二星期六 節

可用中文或英文作答

There are 11 problems for this examination and the weights for each (sub)problem is indicated.

- 1. Please answer the following question:
 - a. (5%) What is *context switch*?
 - b. (5%) What are the necessary conditions for the happening of a deadlock?
- 2. (10%) Please draw the *Diagram of Process State Transition* and write in the diagram the name of a transition. Explain the reasons why a transition occurs.
- 3. Please answer the following question:
 - a. (5%) What is thrashing?
 - b. (5%) How to prevent it?
- 4. Please answer the following question:
 - a. (4%) What is the purpose of system call?
 - b. (6%) What are three general methods used to pass parameters to the operating system in the system calls during different circumstance?
- 5. Given a reference string: 4, 3, 2, 1, 4, 3, 5, 4, 2, 1.
 - a. (5%) How many page faults will occur using FIFO page-replacement algorithm? For 4 page frame.
 - b. (5%) How many page faults will occur using LRU (Least Recently Used) page-replacement algorithm? For 4 page frame.

備				考	試	題	隨	卷	繳	交	
命	題	委	員								(簽章)

⁹ 書寫時請勿超出格外,以每印製不清。

國立政治大學九十 八 學年度研究所 碩士班入學考試命題紙

第2頁,共3頁

													. Arks	
											[3月14日	3 第	
老	試	科	目	作業系統	所	別	資訊科學系	考	試	時	間	星期六		節
1′	- •										l	_E /94 / 1		

- 6. Please answer the following question:
 - a. (5%) Why we have to guard against race condition and synchronize the *critical* section?
 - b. (5%) Please justify whether the following two concurrent serializable transaction T_0 and T_1 , schedule S can be transformed into a serial schedule S'

T_{0}	T_1
read(A)	
write(A)	
	read(B)
read(B) write(B)	write(B)
4	read(B) write(B)

- 7. Consider a multi-level feedback queue in a single-CPU system. The first level (queue 0) is given a quantum of 8 ms, the second one a quantum of 16 ms, the third is scheduled FCFS. Assume six jobs (J1 ~ J6) arrive all at time zero with the following job times (in ms): 4, 7, 12, 15, 25 and 30.
 - a. (4%) Show the Gantt chart for this system.
 - b. (3%) Compute the turnaround time.
 - c. (3%) Compute the response time.
- 8. (5%) Which of the following algorithms are preemptive scheduling?
 - a. First-in-first-out
 - b. Round-robin
 - c. Shortest-job-first
 - d. Multilevel Feedback Queue Scheduling

備	·_ · · · · · · · · · · · · · · · · ·			老	主式	題	陪審		緞	·····································	
/用 						~	1-42				/ At
命	題	委	員	:							(簽章)

⁹ 書宜時諸勿紹出格外,以每印製不清。

國立政治大學九十 八 學年度研究所 碩士班入學考試命題紙

第3頁,共3頁

Ä	<u>t</u> z.	試	科	目	作类多数	所	別	資訊科學系	业	試	時	間	3月14	日	第	
	7	0-Y	11		7F 亲 尔	,,,	744	英 四471 于 水	1-3	B24.	4.1	151	星期六		舒	ř

- 9. Please answer the following question about memory management:
 - a. (3%) Consider a two-level page table scheme, in which the outer page table itself is also paged with the page table store in memory. If a memory reference takes 90 nanoseconds, how long does a paged memory reference take?
 - b. (2%) If we add TLBs, and 95 percent of all page-table references are found in the TLBs, what is the effective memory reference time? (Assume that finding a page-table entry in the TLBs take 9 nanoseconds, if the entry is there)

10.Please answer the following question:

- a. (5%) What is *starvation*?
- b. (3%) Among the FCFS(first-come-first-serve), SSTF(shortest-seek-time-next), LOOK, SCAN, C-LOOK, C-SCAN, and N-Step SCAN disk-head scheduling policies, which are subject to starvation at high loads?
- c. (2%) Response times are more predictable in preemptive systems than in non-preemptive systems. *True or False?*
- 11. Consider the following hardware configuration. Virtual address = 32 bits, page size = 4Kbytes, and a page table entry occupies 4 bytes. How many pages should the OS allocate for the pages tables of a 12Mbyte process under the following paging mechanisms?
 - a. (5%) one-level paging.
 - b. (5%) two-level paging. (Assuming that the number of entries in a first-level page table is the same as that in a second-level page table)

備			考試	題	隨	卷	繳	交	
命題	委	員	:						(簽章)