國立政治大學九十/\ 學年度研究所博士班入學考試命題紙 第1 頁,共1 頁

考試科目 镍性代电 所列 應用數學系 考試時間 3月14日第2節

- 1. (20%) Let A, B be two $n \times n$ complex matrices such that AB = BA. Suppose A has n distinct eigenvalues. Show that B is diagonalizable.
- 2. (20%) Let A be a 5×5 real matrix. Suppose that $A^3 = 0$, but $A^2 \neq 0$. Find all possible Jordan canonical form for A.
- 3. (20%) Let W_1 and W_2 be subspaces of a finite-dimensional inner product space V over a field \mathbb{F} . Suppose dim $W_1 = \dim W_2$. Show that there is an orthogonal linear operator T on V such that $T(W_1) = T(W_2)$.
- 4. (20%) Let V and W be finite-dimensional vector spaces over a field \mathbb{F} with ordered bases $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $\gamma = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$, respectively. Let \mathcal{L} be the vector space of all linear transformation from V to W. Suppose that $T_{ij}: V \to W$ is the linear transformation such that

$$T_{ij}(\mathbf{v}_k) = \begin{cases} \mathbf{w}_i & \text{if } k = j \\ 0 & \text{if } k \neq j. \end{cases}$$

Show that $S = \{T_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$ is a basis for \mathcal{L} .

5. (20%) Let V and W be two subspaces of a vector space over a field \mathbb{F} . Show that $V/(V \cap W)$ is isomorphic to (V + W)/W. Please prove directly by the definition of two vector spaces being isomorphic.

備 考試題隨卷繳交

命題委員:

(簽章)

命題紙使用說明:1.試題將用原件印製,敬請使用黑色墨水正楷書寫或打字 (紅色不能製版請勿使用)。

- 2. 書寫時請勿超出格外,以免即製不清。
- 3. 試題由郵寄遞者請以掛號等劃,以免遺失而示慎重。