微積分

所

考試時間 3月6日 成第一節

- 1. (16%) Prove or disprove (by a counter example): Let f be a real-valued differential odd function defined on \mathbb{R} . Let g(x) = |f(x)|. Suppose that $f(x_0) = 0$ for some $x_0 \in \mathbb{R}$. Then g is not differentiable at the point $x = x_0$.
- 2. (16%) Let $f(x, y, z) = \max\{x, y, z\}$ for all $(x, y, z) \in \mathbb{R}^3$. Is f a continuous function? Justify your answer.
- 3. Let f be a continuous real-valued function defined on $[a, b] \subset \mathbb{R}$. Suppose that f is differentiable on (a, b). Let

$$G(x) = \int_{a}^{x} f(t) \, dt$$

- (a) (6%) Show that G is well-defined.
- (b) (10%) Show that G'(x) = f(x).
- 4. (a) (5%) State the Stoke's theorem.
 - (b) (15%) Let $\mathbb{F}(x, y, z) = (3y, -xz, yz^2)$ be a vector field on \mathbb{R}^3 . Let S be portion of the surface $z = (x^2 + y^2)/2$ below the plane z = 2, with the curve C as the boundary. Verify Stoke's theorem.
- 5. (16%) Let f be a real-valued function on \mathbb{R} . Suppose that

$$f''(x) = (x-1)^{71}(x-2)^{52}(x-3)^{111}$$

and f'(0) < f'(1) < f'(5) < f'(3). Show that $5f'(0) + f(0) \le f(x) \le 5f'(3) + f(0)$, for all $x \in (0, 5)$.

6. (16%) Find all possible real differentiable function on R such that the derivative of the function is itself. Justify your answer.

備

試

題

隨

卷

繳

交