國立高雄大學一百學年度研究所碩士班招生考試試題

科目:統計學

系所:

考試時間:100分鐘

統計學研究所(風險管理組)

是否使用計算機:否

本科原始成績:100分

1. (10%) Let the joint density of (X,Y) be $f(x,y)=c, x^2+y^2\leq 1$.

- (a) Find c and compute the correlation of X and Y.
- (b) Are X and Y independent? Why or why not?
- 2. (10%) Let X be a random variable with density $f(x) = \lambda e^{-\lambda x}$, x > 0, $\lambda > 0$. Find the marginal density functions of $Y = \sqrt{X}$ and $Z = 1 e^{-\lambda X}$.
- 3. (10%) A die is rolled and denote the probability of a 6 appearing by p. How many times should we throw the die if the probability of estimating p with error within 0.01 is at least 0.9?
- 4. (10%) Let X_1, \dots, X_n be a random sample from the uniform distribution on the interval (-10,10). Let $X_{(1)} \leq \dots \leq X_{(n)}$ be the order statistics of X_1, \dots, X_n . Compute $E(X_{(7)} X_{(3)})$.
- 5. (15%) Suppose that the random variables Y_1, \dots, Y_n satisfy

$$Y_i = \beta x_i + \varepsilon_i, \ i = 1, \dots, n,$$

where x_1, \dots, x_n are fixed constants, and $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d. $N(0, \sigma^2), \sigma^2$ unknown.

- (a) Find a sufficient statistic for (β, σ^2) .
- (b) Find the MLE (maximum likelihood estimator) of β . Is it an unbiased estimator?
- 6. (15%) Let X_1, \dots, X_n be a random sample from the uniform distribution on the interval $(0, \theta)$, $\theta > 0$. Find the UMVUE (uniformly minimum variance unbiased estimator) of θ if it exists.
- 7. (30%) Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$ distribution. Consider testing $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$. Let \overline{X} denote the sample mean and S^2 denote the sample variance.
 - (a) If σ^2 is known, show that the test that rejects H_0 when

$$\overline{X} > \mu_0 + z_\alpha \sqrt{\sigma^2/n}$$

can be derived as an LRT (likelihood ratio test), where z_{α} satisfies $P(Z \geq z_{\alpha}) = \alpha$ with $Z \sim N(0,1)$.

- (b) Show that the test in (a) is a UMP (uniformly most powerful) test.
- (c) If σ^2 is unknown, show that the test that rejects H_0 when

$$\overline{X} > \mu_0 + t_{n-1,\alpha} \sqrt{S^2/n}$$

can be derived as an LRT, where $t_{n-1,\alpha}$ satisfies $P(T_{n-1} \ge t_{n-1,\alpha}) = \alpha$ with T_{n-1} following the t distribution with n-1 degrees of freedom.