8 ERGE [T HETE Ca)

TP LA 101 SEEELEHREL G 4 2R A

A3 : 4078
£5HEE1E

1

NOTE: Please simply your computation into decimal numbers whenever possible.

(15%) You are going to enhance a machine, and there are two possible improvements:
either make multiply instructions run four times faster than before, or make memory
access instructions run two times faster than before. You repeatedly run a program that
takes 200 seconds to execute. Of this time, 50% is used for multiplication, 20% for
memory access instructions, and 30% for other tasks. Determine the speedup for the
corresponding cases. Copy Table 1 to your answer sheet and fill your answers.

Enhancement cases:
C1: Improve only multiplication
C2: Improve only memory access
C3: Improve both multiplication and memory access

Table 1.

Enhancement case Speedup
C1
1 C2

C3

(5%) The dynamic power of a processor is related to the capacitive load (C), operation
frequency (F) and voltage (V) with this equation Power=CFV*. Suppose we developed a
new, simpler processor that has 80% of the capacitive load of the more complex older
processor. Further, we can reduce the voltage of the new processor by 20% and let the
new processor run at 20% faster frequency. What’s the dynamic power of the new
processor (Prew) With respect to the dynamic power of the old processor (Po14)?

(10%) The following C procedure swap is compiled into the corresponding MIPS
assembly code. Assume that the parameters v and k, and variable temp are in registers
$a0, sal and $tO, respectively. Other registers that can be used are $t1 and $t2. C
procedure :
void swap(int vi], int k)
{
int temp;
temp = vi[k];
vik] = v[k+1l];
vik+l] = temp;

Bl L RS 101 2FEALEREF3G A HHAA

gk 4078

FECHERSHE [FT2BLETE - i) SR ROE
MIPS assembly code:
Swap: sll $tl, sal, 2
add $tl, $a0, OPA
1w $t0, 0(s$tl)
1w $t2, 4(OPB)
SW OPC, 0(stl) v
sw OPD, 4($tl) ‘
Jr Sra
Please determine proper values for the operands (OPA, OPB, OPC, OPD). Copy the
following table (Table 3) to your answer sheet and fill in the operand values.
Table 3.
Operand Value
OPA
OPB
OPC
OPD
4 (10%) Figure 4.1 is a basic multiplication hardware and Figure 4.2 is an improved

version of the basic one.

Figure 4.1: Basic multiplication hardware

~————

Muttiplicand

Shift left

y

64 bits

hvd
84-bit ALU

—

Muttiplier

Shift right [
32 bits

Control test) y

Bl 3l K22 101 240

FALBaE L E P 4 A R A

ZE3E - 4078

18 [HEEE BT I 4R B~
Figure 4.2: Improved multiplication hardware
Pt st right @
i Write =
84 bits
The following statements are possible observations for the improvement:
S1: The multiplicand register, ALU, Multiplier register and the Product register are
all 32 bits wide;
S2: The Product register always shifts right two bits in each iteration;
S3: The original Multiplier register disappears and is now placed in the right half of
the Product register initially; »
S4: The left side of the Product register is initially set to zero.
S5: The Multiplicand register is initially set to zero.
Please copy the following table (Table 4) to your answer sheet and determine if these
statements are true or false.
Table 4: -
Statement True (T) or False (F)
S1
S2
S3
S4
S5
5 (20%) The following figure is a simple implementation of a MIPS subset (R-type,
lw, sw, beq). Copy Table 5 to your answer sheet and fill in the corresponding
control signal values (0, 1 or X) for instructions 1w (load word) and beg (branch on
equal).
Table 5:
Instruction | ALUSrc MemtoReg | RegWrite | MemWrite | RegDst
1w '
beqg

#a

HxX P AL 101 25 EELBELE9E 4 X RS

g3 4078

 HEREE [FLaELET A 4] AR

ASEF4R

Add

- xex ©

ALU
result) e

//\J RegDst ,
/ \ Branch
i | MemRead

MemtoReg
ALUOD
| | MemWrite
\ /" ALUSre

\ RegWrite
N

Instruction [25~21] | Read
bl oG [Read

address register 1 geaq
Instruction [20-16] | Read data 1

Instruction || [. | " | register 2
e d 0
(31-0] M | write Read
Instruction || linsinuction [15-11] | ¥ [| register data2
memory .

| Write
deta Registers

Instruction [15-0] 18, [sign-} 22 !//Ai}\) l
Ay ~
' extend] [\\control
_:j/

4

>

dd

Instruction [31

—26
liContro!

Read
| Address data ™™

(Y

Oxgzm-

Write Data
duta memory

y

Instruction [5-0]

- (10%) There are three small caches, each consisting of four one-word blocks. The first
cache is direct mapped, the second cache is two-way set associative, and the third cache
is fully associative. Find the numbers of misses for each organization given the following
sequence of block addresses: 8, 0, 8, 6, 0. Copy Table 6 to your answer sheet and fill in
the answers. Assume that the least recently used replacement policy is used for the fully
associative cache and the set-associative cache.

Table 6:
Cache organization Number of misses
Direct mapped
Two-way set associative
Fully associative

(Total 15%) Suppose we want to sum 100,000 numbers on a single-bus multiprocessor
computer. Let’s assume we have 10 processors. The first step would be to split the set of
numbers into subsets of the same size. All processors start the program by running the
following loop that sums their subset of numbers, where Pn is its processor index (0~9):

sumfPn] = 0;

AR

_—

IFLRE 101 B5EEL A EIR AL WA
AE3E 4078

B ERER [§14E+HTE 2a) #£5F £5E

Jor (I =10000 * Pn; I < 10000 * (Pn+1); =1+ 1)
sum[Pn] = sum[Pn] + A[I]; // sum the assigned areas

The next step is to add these many partial sums, so we divide to conquer. Half of |
processors add pairs of partial sums, then a quarter add pairs of the new partial sums,
and so on until we have the single, final sum. We want each processor to have its own
version of loop counter variable 7, so we must indicate that it is a “private” variable. -

In this problem, the two processors must synchronize before the “consumer” processor
tries to read the result from the memory location written by the “producer” processor;
otherwise, the consumer may read the old value of the data. Here is the code (half is also
a private variable):

half = 10; /710 processors in 1-bus multiprocessor.
repeat
synch(); // wait for partial sum completion.
if (half%2 |= 0 && Pn == ()
sum[0] = sum[0] + sum[half - 1]; //the case for odd number of
//summing processor
half = half / 2; // dividing line on who sums.
if (Pn < half) sum{Pn] = sum[Pn] + sum[Pn+half];
until (half == 1); // exit with final sum in sum[0].

Question: according to the algorithm, find out what operations are executed by the
designated processor during the designated repeat-loop iteration. (Ex: NOP or sum[0] =
sum[0] + sum [4]). Copy Table 7 to your answer sheet and fill in the answers.

Table 7:
Processor index | Repeat-loop iteration Operation
Pn=2 first -
Pn=2 second
Pn=0 third

(15% total) Consider a two-bit adder with its two operands A; and B; where i=0, 1 (0 is
the least significant bit) and the carry-in bit Cy and carry-out bit C,.

8.1 (5%) Derive the Boolean equation for the carry-out bit C, usmg only Az, B; (where
=0, 1) and C,.

8.2 In a carry-lookahead adder, there are two addltlonal signals defined, G=A; - B;
(generate), P=A;+B; (propagate). Derive the Boolean equation for the carry-out bit
C; using only G;, P; (where =0, 1) and C,,

8.3 (5%) What are the advantages of the Boolean equation in Problem 8.1 over the
Boolean equation in Problem 8.27

	MX-M350U_20120320_150747.pdf

