## 國立中山大學 101 學年度碩士暨碩士專班招生考試試題

科目:半導體概論【電機系碩士班甲組】

題號:4068 共1頁第1頁

- 1. Formulate the ideal diode current-voltage characteristics,  $I_D = I_S \cdot \exp(V_D/\eta V_T 1)$ , with respect to the Diode cross-sectional area A, the carrier diffusion lengths:  $L_n$  and  $L_p$ , the carrier diffusion coefficients:  $D_n$  and  $D_p$ , the equilibrium minority-carrier densities:  $n_{po}$  and  $p_{no}$ , and the diode voltage bias:  $V_D$ . Where  $\eta$  is ideal factor of the diode. (20%)
- 2. Show the fabrication process and draw its corresponding  $I_D$   $V_D$  and  $I_D$   $V_G$  current characteristics of an Enhancement mode N-channel MOSFET (*ENH nMOS*) and a Depletion mode N-channel MOSFET (*DEP nMOS*) respectively. (Note: You need point out the main differences between them) (20%)
- 3. A MOSFET has a threshold voltage of  $V_T$ = 0.5 V, a subthreshold swing (SS) of 100 mV/decade, and a drain current of 0.1  $\mu$ A at  $V_T$ . What is the subthreshold leakage current at  $V_G$ = 0 V? (20%)
- 4. Nowadays for CMOS IC industry we normally need a buffered layer placed between a high-k Ta<sub>2</sub>O<sub>3</sub> and the silicon substrate. Please calculate the effective oxide thickness (*EOT*) when the stacked gate dielectric is Ta<sub>2</sub>O<sub>3</sub> (k = 25) with a thickness of 7.5 nm on a buffered nitride layer (k = 7) and a thickness of 1 nm). Also calculate *EOT* for a buffered oxide layer (k = 3.9) and a thickness of 0.5 nm). (20%)
- 5. Consider an n-channel MOSFET with source and drain doping concentrations of  $N_D = 10^{19}$  cm<sup>-3</sup> and a channel region doping of  $N_A = 3 \times 10^{16}$  cm<sup>-3</sup>. Assume a channel length of  $L = 0.6 \, \mu \text{m}$ ,  $\varepsilon_s = 11.9 \times 8.85 \times 10^{-14} \, \text{F/cm}$ ,  $n_i = 1.5 \times 10^{10} \, \text{cm}^{-3}$  and assume the source and the body are at ground potential. Assuming the abrupt junction approximation please calculate the theoretical punch-through voltage. (20%)