國立中山大學 101 學年度碩士暨碩士專班招生考試試題 科目:半導體概論【電機系碩士班甲組】 題號:4068 共1頁第1頁 - 1. Formulate the ideal diode current-voltage characteristics, $I_D = I_S \cdot \exp(V_D/\eta V_T 1)$, with respect to the Diode cross-sectional area A, the carrier diffusion lengths: L_n and L_p , the carrier diffusion coefficients: D_n and D_p , the equilibrium minority-carrier densities: n_{po} and p_{no} , and the diode voltage bias: V_D . Where η is ideal factor of the diode. (20%) - 2. Show the fabrication process and draw its corresponding I_D V_D and I_D V_G current characteristics of an Enhancement mode N-channel MOSFET (*ENH nMOS*) and a Depletion mode N-channel MOSFET (*DEP nMOS*) respectively. (Note: You need point out the main differences between them) (20%) - 3. A MOSFET has a threshold voltage of V_T = 0.5 V, a subthreshold swing (SS) of 100 mV/decade, and a drain current of 0.1 μ A at V_T . What is the subthreshold leakage current at V_G = 0 V? (20%) - 4. Nowadays for CMOS IC industry we normally need a buffered layer placed between a high-k Ta₂O₃ and the silicon substrate. Please calculate the effective oxide thickness (*EOT*) when the stacked gate dielectric is Ta₂O₃ (k = 25) with a thickness of 7.5 nm on a buffered nitride layer (k = 7) and a thickness of 1 nm). Also calculate *EOT* for a buffered oxide layer (k = 3.9) and a thickness of 0.5 nm). (20%) - 5. Consider an n-channel MOSFET with source and drain doping concentrations of $N_D = 10^{19}$ cm⁻³ and a channel region doping of $N_A = 3 \times 10^{16}$ cm⁻³. Assume a channel length of $L = 0.6 \, \mu \text{m}$, $\varepsilon_s = 11.9 \times 8.85 \times 10^{-14} \, \text{F/cm}$, $n_i = 1.5 \times 10^{10} \, \text{cm}^{-3}$ and assume the source and the body are at ground potential. Assuming the abrupt junction approximation please calculate the theoretical punch-through voltage. (20%)