國立中山大學 101 學年度碩士暨碩士專班招生考試試題

科目:機率【電機系碩士班己組】

題號:4067 共1頁第1頁

- 1. (15%) Given any two real-valued random variables X_1 and X_2 with finite second moment. Here, $E\{\cdot\}$ takes the expectation with respect to X_1 and X_2 . If the statement is true, please write a circle ("o") on your ANSWER SHEET. If the statement is wrong, then mark it as ("x") on your ANSWER SHEET. You do NOT need to provide any justification.
 - (a) $(E\{X_1X_2\})^2 \le E\{X_1^2\}E\{X_2^2\};$
 - (b) (). $E\{c_1X_1+c_2X_2\}\neq c_1E\{X_1\}+c_2E\{X_2\}$, where c_1 and c_2 are constant values;
 - (c) (). $E\{(X_1+X_2)^2\} \le E\{X_1^2\} + E\{X_2^2\}$.
- 2. (15%). Let Y be a binomial distribution with parameters n and p; i.e., the probability distribution function of Y is given by $P(Y=y)=\binom{n}{y}p^y(1-p)^{n-y}$, $y=0,1,2,\cdots,n$. Please find
 - (a) the mean of Y,
 - (b) the variance of Y,
 - (c) the probability generating function of Y.
- 3. (10%) The joint probability density function of the random variable (X_1, X_2) is given by

$$f(x_1, x_2) = \begin{cases} c(x_1 + x_2) & 0 < x_1 < x_2 < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Are X_1 and X_2 stochastically independent? Why?

- **4.** (10%) Let X and Y be independent normal random variables with zero mean and unit variance. Find the value of $\mathbb{E}\{X^2Y + XY^2 + X^2Y^2\}$, in which $\mathbb{E}\{\cdot\}$ takes the expectation with respect to X and Y.
- 5. (20%) Explain the following terms in detail: central limit theorem, negative correlated, Bayes' theorem, Tchebycheff inequality.
- 6. (10%) Let X and Y be independent normal random variables with zero mean and standard deviation σ . If $X \cos(\omega t) + Y \sin(\omega t) = R \cos(\omega t \varphi)$. Find the probability density functions of random variables R and φ respectively.
- 7. (10%) Let X be an exponential random variable with parameter λ . Find the mean and variance of 2X.
- 8. (10%) Let Y be a uniform random variable in the range [a, b]. Find the mean and variance of 6Y.