
題號:4065 共 2 頁 第 1 頁

- 1. (15%) A Si p-n junction diode with a cross-sectional area of  $3 \times 10^{-4}$  cm<sup>2</sup>. The parameters of the diode are: acceptor concentration  $N_A = 6 \times 10^{16}$  cm<sup>-3</sup>, donor concentration  $N_D = 2 \times 10^{16}$  cm<sup>-3</sup>, intrinsic carrier concentration  $n_i = 9.65 \times 10^9$  cm<sup>-3</sup>, diffusion constant of electrons  $D_n = 21$  cm<sup>2</sup>/s, diffusion constant of holes  $D_p = 10$  cm<sup>2</sup>/s, carriers lifetime:  $\tau_p = \tau_n = 5 \times 10^{-7}$  s. (i) Calculate the built-in voltage at 300 K. (5%) (ii) Calculate the ideal reverse saturation current. (10%)
- 2. (10%) Consider an n-channel enhancement-mode MOSFET with the following parameters: threshold voltage  $V_{TN} = 0.75$  V, channel width W = 100 µm, channel length L = 10 µm, electron mobility  $\mu_n = 650$  cm<sup>2</sup>/V-s, oxide thickness  $t_{ox} = 500$  Å, and oxide permittivity  $\varepsilon_{ox} = (3.9)(8.85 \times 10^{-14})$  F/cm. (i) Determine the drain current when  $V_{GS} = V_{DS} = 2.5$  V, for the transistor biased in the saturation region. (5%) (ii) Determine the drain current when  $V_{GS} = 2.5$  V and  $V_{DS} = 1$  V, for the transistor biased in the triode (non-saturation) region. (5%)
- 3. (25%) In the circuit shown in Figure 1, the transistor has a  $\beta$  of 250. (i) What is the dc voltage at the collector? (5%) (ii) Find the input resistances  $R_{ib}$  and  $R_{in}$  and the overall voltage gain  $(v_o/v_{sig})$ . (15%) (iii) For an output signal of  $\pm 0.5$  V, what values of  $v_{sig}$  and  $v_b$  are required? (5%)
- 4. (18%) Analyze the circuit of Figure 2 to determine the small-signal voltage gain  $V_o/V_s$ , the input resistance  $R_{in}$ , and the output resistance  $R_{out} = R_{of}$ . The transistor has  $\beta = 100$ .
- 5. (18%) Find the voltage gain  $v_0/v_{Id}$  for the difference amplifier of Figure 3 for the case  $R_1 = R_3 = 10 \text{ k}\Omega$  and  $R_2 = R_4 = 100 \text{ k}\Omega$ . What is the differential input resistance  $R_{id}$ ? If the two key resistance ratios  $(R_2/R_1)$  and  $(R_4/R_3)$  are different from each other by 1%, what do you expect the common-mode gain  $A_{cm}$  to be? Also, find the CMRR in this case.
- 6. (14%) A BJT is specified to have a maximum power dissipation  $P_{D\theta}$  of 2 W at an ambient temperature  $T_{A\theta}$  of 25°C, and a maximum junction temperature  $T_{Jmax}$  of 150°C. Find the following: (a)The thermal resistance  $\theta_{JA}$ . (5%) (b) The maximum power that can be safely dissipated at an ambient temperature of 50°C. (5%) (c) The junction temperature if the device is operating at  $T_A = 25$ °C and is dissipating 1 W. (4%)

題號:4063 共 2 頁 第 2 頁

