系所：電子光電所
科目：電子學（2）

1．Both the basic current mirror and cascode current mirror are shown in Fig．1，please answer following questions：
（a）（5\％）Point out the reason of current mismatch in the basic current mirror and express the output current I_{o} of the basic current mirror in terms of $I_{R E F}$ ．
（b）（5\％）State the reason that the cascode current mirror have an advantage over the basic current mirror．

Fig． 1

2．The amplifier shown in Fig． 2 has $R_{s i g}=R_{L}=1 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega, R_{B}=47 \mathrm{k} \Omega$ ， $\beta=100, C_{\mu}=0.8 \mathrm{pF}$ ，and $f_{T}=600 \mathrm{MHz}$ ．
（a）(5%) Find the dc collector current of the transistor．
（b）（5\％）Find g_{m} and r_{π} ．
（c）（5\％）Find the midband voltage gain from base to collector（Neglect the effect of r_{o} and R_{B} ）and use the gain to find the $R_{i n}$ ．
（d）(5%) Find $C_{i n}$ ．

Fig． 2

3．An amplifier having a low－frequency gain of 10^{3} and poles at $10^{4} \mathrm{~Hz}$ and $10^{5} \mathrm{~Hz}$ is operated in a closed negative－feedback loop with a frequency－independent β ．
（a）（5\％）For what value of β do the closed－loop poles become coincident，i．e．pole 1 equal to pole 2？And at what frequency？
（b）（5\％）What is the low－frequency gain corresponding to the situation in（a）？What is the value of the closed－loop gain at the frequency of the coincident poles？
（c）(5%) What is the value of quality factor Q corresponding to the situation in（a）？
（d）(5%) If β is increased by a factor 10 ，what are the new pole locations？

4．（20\％）（a）If A is an ideal amplifier，$\frac{v_{\text {out }}}{v_{\text {in }}}=$ ？（b）If $A(s)=\frac{A_{0}}{1+s / \omega_{p}}$ ，where $A_{0}=80 \mathrm{~dB}$ and $\omega_{\mathrm{p}}=2 \pi \times 100 \mathrm{rad} / \mathrm{sec}$ ，what is the 3 dB frequency of the closed－loop amplifier？

Fig．P4

5．（ 10% ）If the effect of channel－length modulation is negligible，calculate the low－frequency small－signal voltage gain．Note that $\mu_{\mathrm{n}}=4 \mu_{\mathrm{p}}$ and $\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{\mathrm{n}}=4\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{\mathrm{p}}$ ．

Fig．P5

6．(20%) If the operational amplifier A is ideal，write down（a）the differential gain $\frac{\mathrm{v}_{\text {out }}}{\mathrm{v}_{2}-\mathrm{v}_{1}}=$ ？
（b）the input resistance of the differential amplifier．

Fig．P6

