頁供 华 頁)

第

MA.	國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題	系所:電子光電所
TOF	100 學年度碩士班暨碩士在職專班招生考試試題	科目:電子學(2)

- 1. Both the basic current mirror and cascode current mirror are shown in Fig. 1, please answer following questions:
- (a) (5%) Point out the reason of current mismatch in the basic current mirror and express the output current I_o of the basic current mirror in terms of I_{REF} .
- (b) (5%) State the reason that the cascode current mirror have an advantage over the basic current mirror.

- 2. The amplifier shown in Fig. 2 has $R_{sig} = R_L = 1 k\Omega$, $R_C = 1 k\Omega$, $R_B = 47 k\Omega$, $\beta = 100$, $C_{\mu} = 0.8 \text{ pF}$, and $f_T = 600 \text{ MHz}$.
- (a) (5%) Find the dc collector current of the transistor.
- (b) (5%) Find g_m and r_{π} .
- (c) (5%) Find the midband voltage gain from base to collector (Neglect the effect of r_o and R_B) and use the gain to find the R_{in} .
- (d) (5%) Find C_{in} .

「シ 頁供 4 頁)

■ <u>國</u> 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題 ^彩

ð

系所:電子光電所 科目:電子學(2)

- 3. An amplifier having a low-frequency gain of 10^3 and poles at 10^4 Hz and 10^5 Hz is operated in a closed negative-feedback loop with a frequency-independent β .
- (a) (5%) For what value of β do the closed-loop poles become coincident, i.e. pole 1 equal to pole 2? And at what frequency?
- (b) (5%) What is the low-frequency gain corresponding to the situation in (a)? What is the value of the closed-loop gain at the frequency of the coincident poles?
- (c) (5%) What is the value of quality factor Q corresponding to the situation in (a)?
- (d) (5%) If β is increased by a factor 10, what are the new pole locations?

5. (10%) If the effect of channel-length modulation is negligible, calculate the low-frequency small-signal voltage gain. Note that $\mu_n = 4\mu_p$ and $(\frac{W}{L})_n = 4(\frac{W}{L})_p$.

	第4 頁供 4 頁)
<u></u> 國立雲林科技大學	系所:電子光電所
國立雲林科技大學 100學年度碩士班暨碩士在職專班招生考試試題	科目:電子學(2)

6. (20%) If the operational amplifier A is ideal, write down (a) the differential gain $\frac{v_{out}}{v_2 - v_1} = ?$ (b) the input resistance of the differential amplifier.

•

3

2