1．Ammonia initially at $25^{\circ} \mathrm{C}$ and 1 bar pressure is heated at constant pressure until the volume has become three times of original one．Calculate（a）Q per mole，（b）W per mole，（c）ΔU per mole，and（d）ΔS per mole．Given：ammonia is considered to be an ideal gas． $\mathrm{C}_{\mathrm{p}}=25.9+33.0 \times 10^{-3} \mathrm{~T}-30.5 \times 10^{-7} \mathrm{~T}^{2}$ in $\mathrm{J} /(\mathrm{Kmol}) \quad(\mathbf{2 0 \%})$

2．Two blocks of the same metal with same size are at different temperatures， T_{1} and T_{2} ．Both metals are brought together and allowed to come to the same temperature．（a）Derive the entropy change（ $\Delta \mathrm{S}$ ）for the above procedure with C_{p}, T_{1} ，and T_{2} if C_{p} is constant．（b）Is the above procedure spontaneous？ （20\％）

3．Please explain following items．
（a）Give a P－V chart of reversible Carnot Cycle and define the efficiency．（5\％）
（b）Give a P－V chart of reversible Otto Cycle and define the efficiency．（5\％）
（c）Nernst equation（5\％）
（d）Debye temperature（5\％）

4．Comelli et al．report the excess volume of mixing propionic acid with oxane at 313.15 K as $\mathrm{V}^{\mathrm{E}}=\mathrm{x}_{1} \mathrm{x}_{2}\left\{a_{0}+\mathrm{a}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\}$ ，where x_{1} is the mole fraction of propionic acid，and x_{2} that of oxane，$a_{0}=-2.4697 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and，$a_{1}=0.0608$ $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ ．The density of propionic acid at this temperature is $0.97174 \mathrm{~g} \mathrm{~cm}^{-3}$ ； that of oxane is $0.86398 \mathrm{~g} \mathrm{~cm}^{-3}$ ．
（a）Derive an expression for the partial molar volume of each component at this temperature（ 15% ）
（b）Computer the partial molar volume for each component in an equimolar mixture（ 10% ）

5．The excess Gibbs energy $\left(G^{E}\right)$ of solutions of A and B at 300 K was found to fit the expression

$$
G^{\mathrm{E}}=\operatorname{RT} \times(1-\mathrm{x})\left\{0.486 \cdot 0.108(2 \mathrm{x}-1)+0.019(2 \mathrm{x}-1)^{2}\right\}
$$

Where x is the mole fraction of A ．Calculate the Gibbs energy of mixing when a mixture of 2 mole of A and 3 mole of B is prepared．（ 15% ）

