- In a continuous plug-flow tubular reactor (PFTR), feedstock of pure A is transformed into desired product B in the reaction of A → B at the flow-rate of 4 liter/min with C_{A0} = 2 moles/liter. However, there is a second reaction A → C, which can also occur. Both reactions are first order and irreversible with k₁ = 0.45 min⁻¹ and k₂ = 0.05 min⁻¹. Find reactor volume (V), concentration of B (C_B), selectivity of B (S_B) and yield of B (Y_B) for 95% conversion of A. (20%)
- 2. For the reversible reaction A ↔ B, r = k_fC_A k_bC_B, find the residence times for 50% conversion of A in a continuous stirred tank reactor (CSTR) and in a PFTR respectively, if k_f = 0.7 min⁻¹, k_b = 0.1 min⁻¹, C_{A0} = 4 moles/liter, feedstock flow-rate of 6 liter/min and C_{B0} = 0. (20%)
- 3. In a reaction rate expression, rate constant is usually presented as following:

$$k(T) = k_0 \exp(-E/RT)$$

where E is the activation energy and k_0 is the pre-exponential factor. Please make descriptions to obtain E and k_0 using "differential reactor" method. (10%)

<u>ML</u>	威	$\overline{\underline{M}}$	雲	林	科	技	大	學		
TIT	100	廖白	E度ね	佰-┣-	-	≸栢-	十左	膨重	亚招	生老諍

系所:化材系 試題 科目:化工動力學

ł

4. The parallel reactions

 $A \rightarrow D$

 $A \rightarrow U$

react in a CSTR. The entering molar flow rates are $F_{A0}=5$ mol/min and $F_{D0}=F_{U0}=0$. The effluent molar flow rates are $F_A=1$ mol/min, $F_D=3$ mol/min, and $F_U=1$ mol/min. Determine (10%)

- (a) instantaneous selectivity $S_{\text{D/U}}$ and overall selectivity $~\widetilde{S}_{_{\text{D/U}}}$
- (b) instantaneous Yield Y_D and overall Yield $~\widetilde{Y}_D$
- 5. The following liquid-phase reactions were carried out in a CSTR with the space time τ . (20%)

$3A \rightarrow B + C$	$-r_{1A} = k_{1A}C_A$
$2C \rightarrow 3D$	$r_{2D} = k_{2D}C_{c}$
$3B + 4D \rightarrow 3E$	$\mathbf{r}_{3\mathrm{E}} = \mathbf{k}_{3\mathrm{E}} \mathbf{C}_{\mathrm{B}} \mathbf{C}_{\mathrm{D}}$

- (a) What are the net rates of reaction for A, B, C, D, and E?
- (b) If the inlet feed only includes species A (C_{A0}), what is the exit concentration of C?
- 6. The irreversible elementary reaction
 - $A + B \rightarrow C$

reacts in two CSTRs in series ($\tau_1 = 2.5 \text{min}, \tau_2 = 5 \text{min}$). The influent and effluent volumetric flow rate keep the same (change in volumetric flow rate is negligible). The feed ($C_{A0} = 1.0\text{M}$, $C_{B0} = 1.6\text{M}$) enters the first CSTR and the compositions in the first reactor are $C_{A1} = 0.4\text{M}$. Find the C_{B1} , C_{A2} and C_{B2} (20%)

