1．Whole milk at 293 K having a density of $1030 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity of 2.12 cp is flowing at the rate of $0.605 \mathrm{~kg} / \mathrm{s}$ in a glass pipe having a diameter of 63.5 mm ．
（a）Calculate the Reynolds number．Is this turbulent flow？（10\％）
（b）Calculate the flow rate needed in $\mathrm{m}^{3} / \mathrm{s}$ for a Reynolds number of 2100 and velocity in m / s ．（ 10% ）

2．Using the below figure，the lower plate is being pulled at a relative velocity of $0.40 \mathrm{~m} / \mathrm{s}$ greater than the top plate．The fluid used is water at $24^{\circ} \mathrm{C}$（viscosity of $0.9142 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$ ）．
（a）How far apart should the two plates be placed so that the shear stress τ is $0.30 \mathrm{~N} / \mathrm{m}^{2}$ ？Also，calculate the shear rate．（ 10% ）
（b）If oil with a viscosity of $2.0 \times 10^{-2} \mathrm{~Pa} \cdot \mathrm{~s}$ is used instead at the same plate spacing and velocity as in part（a），what are the shear stress and the shear rate？（ 10% ）

3．A fluid flowing in laminar flow in the x direction between two parallel plates has a velocity profile given by the following

$$
v_{x}=v_{x \max }\left[1-\left(\frac{y}{y_{0}}\right)^{2}\right]
$$

where $2 \mathrm{y}_{0}$ is the distance between the plates， y is the distance from the center line，and v_{x} is the velocity in the x direction at position y ．Derive an equation relating v_{xav}（bulk or average velocity）to $v_{\mathrm{x} \text { max．}}$（ 10% ）

4．Consider a steam pipe of length $L=30 \mathrm{~m}$ ，inner radius $r_{1}=6 \mathrm{~cm}$ ， outer radius $r_{2}=10 \mathrm{~cm}$ ，and thermal conductivity $k=20 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ ．The inner and outer surfaces of the pipe are maintained at average temperatures of $T_{1}=180^{\circ} \mathrm{C}$ and $T_{2}=60^{\circ} \mathrm{C}$ ，respectively．
（12\％all）
（a）．Assume：one－dimensional heat conduction in the r direction only，i．e． $T=T(r)$ ，steady－state，and there is no heat generation．The heat equation can be can be derived as：

$$
\frac{d}{d r}\left(r \frac{d T}{d r}\right)=0
$$

Together with the following boundary conditions：

$$
T\left(r_{1}\right)=T_{1} \quad \text { and } T\left(r_{2}\right)=T_{2}
$$

Derive that the temperature distribution inside the pipe is：

$$
T(r)=\frac{\left(T_{2}-T_{1}\right)}{\ln \left(r_{2} / r_{1}\right)} \ln \left(r / r_{1}\right)+T_{1} .
$$

（b）．Calculate the heat flux at $r=8 \mathrm{~cm}$ ． 4\％
（c）．Calculate the rate of heat conduction through the pipe． 4\％

5．Heat conduction through composite walls
（ 14% all）
（a）．As shown in the following figure，a composite wall is made up of three materials of different thicknesses，$x_{1}-x_{0}, x_{2}-x_{1}$ ，and $x_{3}-x_{2}$ ，and different conductivities k_{01}, k_{12} ，and k_{23} ．At $x=x_{0}$ ，substance 01 is in contact with a fluid at temperature T_{a} ，and at $x=x_{3}$ ，substance 23 is in contact with a fluid at temperature T_{b} ．The convective heat transfer coefficients at the boundaries $x=x_{0}$ and $x=x_{3}$ are h_{0} and h_{3} ， respectively．

[^0]Assume：one－dimensional heat conduction in the x direction only，i．e． $T=T(x)$ ，steady－state，and there is no heat generation．Derive that the heat flux can be calculated by：

$$
q_{0}=U\left(T_{a}-T_{b}\right)
$$

where U ，called the＂overall heat transfer coefficient，＂is given by：

$$
\frac{1}{U}=\frac{1}{h_{0}}+\frac{x_{1}-x_{0}}{k_{01}}+\frac{x_{2}-x_{1}}{k_{12}}+\frac{x_{3}-x_{2}}{k_{23}}+\frac{1}{h_{3}}
$$

Hint：

The energy balance equation $\frac{d}{d x} q_{x}=0$ and the Fourier＇s law $q_{x}=-k \frac{d T}{d x}$ ．
（b）．Now，consider only two layers．A composite wall is made up of two materials of different thicknesses，$L_{1}=0.004 \mathrm{~m}$ and $L_{2}=0.01 \mathrm{~m}$ ，different conductivities $k_{1}=0.78 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ and $k_{2}=0.026 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ ，and same surface areas $A=1.2 \mathrm{~m}^{2}$ ．The temperatures of the two fluid streams are $T_{a}=30^{\circ} \mathrm{C}$ and $T_{b}=0^{\circ} \mathrm{C}$ ．The convective heat transfer coefficients at the boundaries are $h_{a}=10 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$ and $h_{b}=40 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$ ．Calculate：
（i）．The overall heat transfer coefficient U and the heat flux q_{0} ．$\quad 4 \%$
（ii）．The temperatures at the boundaries of the two materials T_{1}, T_{2} ，and $T 3$ ．

5\％
Note：The temperatures are in the order of $T_{a} \rightarrow T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow T_{b}$ ．

6．Air at $70^{\circ} \mathrm{F}\left(T_{b 1}\right)$ and 1 atm is to be pumped through a straight 2－in (D) i．d．tube at a rate of $70 \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}(w)$ ．A section of the tube is to be heated to an inside wall temperature of $250^{\circ} \mathrm{F}\left(T_{0}\right)$ to raise the air temperature．The heated length is $20 \mathrm{ft}(L)$ ．The physical properties of air are as follows： viscosity $\mu=0.05 \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}-\mathrm{ft}$ ，specific heat $C_{p}=0.242 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ}{ }^{\circ} \mathrm{F}$ ，and thermal conductivity $k=0.018 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$ ．Calculate：\quad（12\％all）
（a）．The logarithmic mean heat transfer coefficient h_{ln} ．$\underline{4 \%}$
（b）．The bulk temperature of air at the exit of the heated region $T_{b 2} . \underline{4 \%}$
（c）．The rate of heat flow Q ．
4\％

Hint：

As shown in the following figure，a fluid flows through a circular tube of diameter D ，in which there is a heated wall section of length L and varying inside surface temperature $T_{o}(z)$ ，going from $T_{O 1}$ to $T_{O 2}$ ．The bulk temperature T_{b} of the fluid increases from $T_{b 1}$ to $T_{b 2}$ in the heated section．

國立雲林科技大學
 系所：化材系
 ri＊
 100 學年度碩士班暨碩士在職專班招生考試試題 科目：單元操作與輸送現象：

BIRD：Trausport Phenomena， $2 e$
The logarithmic mean temperature difference ΔT_{ln} and the logarithmic mean heat transfer coefficient h_{In} are defined as：

$$
\begin{aligned}
& Q=h_{\mathrm{ln}}(\pi D L) \Delta T_{\mathrm{ln}} \\
& \Delta T_{\mathrm{ln}}=\left(T_{0}-T_{b}\right)_{\mathrm{ln}}=\left[\left(T_{01}-T_{b 1}\right)-\left(T_{02}-T_{b 2}\right)\right] /\left[\ln \left(T_{01}-T_{b 1}\right)-\ln \left(T_{02}-T_{b 2}\right)\right]
\end{aligned}
$$

where the rate of heat flow Q can also be calculated by：

$$
Q=w C_{p}\left(T_{b 2}-T_{b 1}\right)
$$

$h_{\text {ln }}$ can be estimated by the following correlations：for highly turbulent flow $(\operatorname{Re}>20,000), N u_{\text {In }}=0.026 \operatorname{Re}^{0.8} \operatorname{Pr}^{1 / 3}$ and for laminar flow，$N u_{\mathrm{ln}}=1.86(\operatorname{Re} \operatorname{Pr} D / L)^{1 / 3}$ ．The dimensionless parameters are defined as： $\operatorname{Pr}=C_{p} \mu / k, \operatorname{Re}=D v_{b} \rho / \mu=4 w /(\pi D \mu)$ ，and $N u_{\ln }=h_{\ln } D / k$ ．

7．As part of the manufacturing process for the fabrication of titanium－ oxide－based solar panels，a layer of nonporous titanium oxide must be reduced to metallic titanium， Ti ，by hydrogen gas as shown in the following figure：

The reaction at the $\mathrm{Ti} / \mathrm{TiO}_{2}$ boundary is given by：

$$
\mathrm{TiO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ti}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Let species A represent $\mathrm{H}_{2}(\mathrm{~g})$ and species B represent $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ ．Further assume：（1）．The non－homogeneous reaction occurs only at the $\mathrm{TiO}_{2} / \mathrm{Ti}$ surface，i．e．there is no reaction occurring when species $\mathrm{A}\left(\mathrm{H}_{2}\right)$ diffuses in the Ti layer $\left(R_{A}=0\right)$ ；（2）The diffusion of species $\mathrm{A}\left(\mathrm{H}_{2}\right)$ is under steady state and one－dimensional（ z－direction）conditions．
（a）．Using the following boundary conditions：$z=0, y_{A}=1.0$ and $z=\delta$ ， $y_{A}=0$ ，derive that $N_{A, z}=\frac{c D_{A B}}{\delta}$ ． 6\％
Where $c, D_{A B}$ are the gas phase concentration and diffusivity，respectively． （b）．Further consider a pseudo steady－state condition for the growth of the Ti layer（thickness δ ）．Using the following boundary conditions：$t=0$ ， $\delta=\delta_{1}$ and $t=\theta, \delta=\delta_{2}$ ，derive that $\theta=\frac{\rho_{T i} / M_{T i}}{c D_{A B}}\left(\delta_{2}{ }^{2}-\delta_{1}{ }^{2}\right)$ ． 6\％
Where $\rho_{T i}, M_{7 i}$ are the density and molecular weight of Ti，respectively．

Hint：

The general differential equation for mass transfer of species A ：

$$
\frac{\partial c_{A}}{\partial t}+\left[\frac{\partial N_{A . x}}{\partial x}+\frac{\partial N_{A, y}}{\partial y}+\frac{\partial N_{A, z}}{\partial z}\right]=R_{A}
$$

Fick＇s equation of species A：

$$
N_{A, z}=-c D_{A B} \frac{d y_{A}}{d z}+y_{A}\left(N_{A, z}+N_{B, z}\right)
$$

[^0]: BIRD：Transport Phenomuerm， $2 e^{*}$
 Fig．10．6－1 W－150

