本試題共十題，共計 100 分，請依題號作答並將答案寫在答案忩上，違者不予計分。

1．（ 5% ；複選全對才給分）A and B are 3 X 3 matrices and $|A|=-3,|B|=2$ ．Which statements are correct？
（a）$|\mathrm{AB}|=-6$ ；
（b）$\left|2 \mathrm{AB}^{-1}\right|=-6$ ；
（c）$\left|\left(\mathrm{A}^{2}\right)^{t}\right|=-9 \quad$ ；
（d）$\left|\left(A^{t}\right)^{2}\right|=9$
（e）$\left|\left(A^{2} B^{-1}\right)^{t}\right|=-18$

2．（ 10% ）Consider the two vectors，$(1,2,-1)$ and $(3,1,0)$ ．（a）（2\％）Find the norms of the two vectors．（b）（ 2% ）Normalize the two vectors．（c）（6\％）Find a vector that is orthogonal to the two vectors．
3．(15%) Consider the matrix $A=\left[\begin{array}{ccc}9 & -3 & 3 \\ -3 & 6 & -6 \\ 3 & -6 & 6\end{array}\right]$ ．
（a）（5\％）Find its eigenvalues．（b）（5\％）Find the corresponding normalized eigenvectors．
（c）(5%) Find the matrix A^{10} ．
4．（10\％）Asus and Acer are competing for customers at notebook market．A study has been made of customer satisfaction with the various companies．The results are expressed by the following matrix R．The First column of R implies that 75\％of those currently using Asus notebook are satisfied and intend to use Asus next time，while 25% of those using Asus are dissatisfied and plan to use Acer next time．There is a similar interpretation to the second column of R．If the current trends continue，how will the customer distribution eventually settle？
（from）
Asus
\(R=\left[\begin{array}{ll}75 \% \& 20 \%

25 \% \& 80 \%\end{array}\right]\)| Asus |
| :---: |
| Acer |

5．（5\％）Determine the inverse of the matrix $\left[\begin{array}{lll}5 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 3\end{array}\right]$ ，if it is exists，using the method of Gauss－Jordan elimination．

6．（5\％）Determine the equation of the polynomial of degree two whose graph passes through the point $(1,6),(2,3),(3,2)$

7．（15\％）Determine the inverse of each of the following matrices，if it exists，using the method of Gauss－Jordan elimination．
（a）$(5 \%)\left[\begin{array}{ccc}1 & 2 & -3 \\ 1 & -2 & 1 \\ 5 & -2 & -3\end{array}\right]$
（b）$(5 \%)\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 4 & -3 \\ 1 & -2 & 0\end{array}\right]$
（c）$(5 \%)\left[\begin{array}{cccc}-3 & -1 & 1 & -2 \\ -1 & 3 & 2 & 1 \\ 1 & 2 & 3 & -1 \\ -2 & 1 & -1 & -3\end{array}\right]$
8．（ 10% ）Solve the following problems．
（a）(5%) Find x such that $\left[\begin{array}{cc}2 x & 7 \\ 1 & 2\end{array}\right]^{-1}=\left[\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right]$ ．
（b）(5%) Find A such that $\left(4 A^{t}\right)^{-1}=\left[\begin{array}{cc}2 & 3 \\ -4 & -4\end{array}\right]$ ，where the superscript t denotes the transpose operation．

9．（9\％）Prove that the transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y)=(3 x, x+y)$ is linear． Find the images of the vectors $(1,3)$ and $(-1,2)$ under this transformation．

10．（ 16% ）Consider the linear transformation T defined by each of the following matrices．
Determine the kernel and range of each transformation．Show that dim $\operatorname{ker}(T)+\operatorname{dim} \operatorname{range}(T)$ $=\operatorname{dim}$ domain (T) for ea ch transformation．（Note that the abbreviations of dim and ker denote dimension and kernel，respectively．
（a）$(8 \%)\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$
（b）$(8 \%)\left[\begin{array}{lll}1 & 1 & 5 \\ 0 & 1 & 3 \\ 2 & 1 & 7\end{array}\right]$

