1．Two diodes with identical reverse saturation currents of I_{S} are placed in series as shown in Fig．1． Calculate $I_{B}, V_{D I}$ ，and $V_{D 2}$ in terms of V_{B} and I_{S} ．（10\％）

Figure 1

Figure 2

2．Figure 2 shows the output characteristics of a bipolar junction transistor．The load line is inserted with four operating points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D with different base currents．Answer the following questions and explain why．
（a）Which operating point leads to the largest transconductance，g_{m} ？
（b）Which operating point leads to the largest output resistance，r_{O} ？

3．The bipolar pnp amplifier is depicted in Fig．3．Assume $r_{O}<\infty$ ．
（a）Draw the small signal equivalent circuit diagram．（5\％）
（b）Compute the output impedance．（5\％）
（c）Calculate the voltage gain．（5\％）

Figure 3

Figure 4

4．Answer the questions below for the Op－Amp－based circuitry shown in Fig．4．
（a）Which type is this amplifier？
（b）If the gain of $\mathrm{Op}-\mathrm{Amp}, \boldsymbol{A}_{0}$ ，is infinite，calculate the voltage gain， $\boldsymbol{v}_{o u l} / v_{i n}$ ．
（c）If the gain of $\mathrm{Op}-\mathrm{Amp}, \boldsymbol{A}_{0}$ ，is finite，calculate the voltage gain， $\boldsymbol{v}_{\text {out }} / \boldsymbol{v}_{\text {in }}$ ．

國立雲林科技大學
100 學年度碩士班暨碩士在職專班招生考試試題

5．For the MOS cascode amplifier illustrated in Fig．5，we assume that the transistors are symmetric，i．e．，M_{1}, M_{3}, M_{5} and M_{7} are identical to M_{2}, M_{4}, M_{6} and M_{8} ，respectively．Two equal resistors，R_{1} and R_{2} ，appear across the source and drain of M_{5} and M_{6} due to the non－ideal IC process．Assume $\lambda \neq 0$ and all the MOS transistors operate in saturation region．
（a）Draw the equivalent half circuit．（5\％）
（b）Calculate the output resistance．（5\％）
（c）Calculate the differential voltage gain．
（Note ：All the small signal parameters of MOS transistors are added with suffix equal to the number of their corresponding transistor．For example，the transconductance and output resistance of M_{I} are written as $g_{m l}$ and $r_{O I}$ ．）

Figure 5

Figure 6

Figure 7

6．For the amplifier shown in Fig．6，the MOS transistor，M_{l} ，operates in saturation region． Assume $\lambda \neq 0$ ．
（a）Draw the small signal equivalent circuit diagram of this amplifier with all parasitic capacitances．（5\％）
（b）Calculate the mid－band voltage gain，$\nu_{\text {out }} / v_{i n}$ ．
（c）Use Miller＇s theorem to estimate the input and output poles with all parasitic capacitances． （10\％）

7．The current mirror shown in Fig． 7 uses two NMOS transistors to determine the output current． The parameters of the transistors are $V_{T H}=0.4 \mathrm{~V}, \mu_{n} C_{o x}=20 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\lambda=0$ ．Let $V_{D D}$ be 2 V ． The aspect ratio（W／L）of M_{1}, M_{2} and M_{3} are 4， 6 and 1 ，respectively．Neglect the body effect．
（a）Calculate $I_{O U T}, I_{R E F}, V_{G S I}$ and $V_{G S 3}$ ．（10\％）
（b）What is the largest value of R_{D} such that M_{2} still works in the saturation region？

