國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試試題	系所:電機系
100學年度碩士班暨碩士在職專班招生考試試題	科目:電子學(1)

1. Two diodes with identical reverse saturation currents of I_S are placed in series as shown in Fig. 1. Calculate I_B , V_{DI} , and V_{D2} in terms of V_B and I_S . (10%)

- 2. Figure 2 shows the output characteristics of a bipolar junction transistor. The load line is inserted with four operating points A, B, C and D with different base currents. Answer the following questions and explain why.
 - (a) Which operating point leads to the largest transconductance, g_m ? (5%)
 - (b) Which operating point leads to the largest output resistance, r_0 ? (5%)
- 3. The bipolar *pnp* amplifier is depicted in Fig. 3. Assume $r_0 < \infty$.
 - (a) Draw the small signal equivalent circuit diagram. (5%)
 - (b) Compute the output impedance. (5%)
 - (c) Calculate the voltage gain. (5%)

- 4. Answer the questions below for the Op-Amp-based circuitry shown in Fig.4.
 - (a) Which type is this amplifier? (5%)
 - (b) If the gain of Op-Amp, A_{θ} , is infinite, calculate the voltage gain, v_{out}/v_{in} . (5%)
 - (c) If the gain of Op-Amp, A_{θ} , is finite, calculate the voltage gain, v_{out}/v_{in} . (5%)

<u>M</u>	國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試	系所:電機系
T	100 學年度碩士班暨碩士在職專班招生考討	、試題 科目:電子學(1)

- 5. For the MOS cascode amplifier illustrated in Fig. 5, we assume that the transistors are symmetric, i.e., M_1 , M_3 , M_5 and M_7 are identical to M_2 , M_4 , M_6 and M_8 , respectively. Two equal resistors, R_1 and R_2 , appear across the source and drain of M_5 and M_6 due to the non-ideal IC process. Assume $\lambda \neq 0$ and all the MOS transistors operate in saturation region.
 - (a) Draw the equivalent half circuit. (5%)

8

- (b) Calculate the output resistance. (5%)
- (c) Calculate the differential voltage gain. (5%)

(Note : All the small signal parameters of MOS transistors are added with suffix equal to the number of their corresponding transistor. For example, the transconductance and output resistance of M_1 are written as g_{m1} and r_{O1} .)

- 6. For the amplifier shown in Fig. 6, the MOS transistor, M_1 , operates in saturation region. Assume $\lambda \neq 0$.
 - (a) Draw the small signal equivalent circuit diagram of this amplifier with all parasitic capacitances. (5%)
 - (b) Calculate the mid-band voltage gain, v_{out}/v_{in} . (5%)
 - (c) Use Miller's theorem to estimate the input and output poles with all parasitic capacitances.(10%)
- 7. The current mirror shown in Fig. 7 uses two NMOS transistors to determine the output current. The parameters of the transistors are $V_{TH} = 0.4$ V, $\mu_n C_{ox} = 20\mu$ A/V² and $\lambda = 0$. Let V_{DD} be 2V. The aspect ratio (*W/L*) of M_1 , M_2 and M_3 are 4, 6 and 1, respectively. Neglect the body effect.
 - (a) Calculate I_{OUT} , I_{REF} , V_{GSI} and V_{GS3} . (10%)
 - (b) What is the largest value of R_D such that M_2 still works in the saturation region? (5%)