1．Let $A=\left[\begin{array}{cccc}1 & 2 & -3 & 4 \\ -4 & 2 & 1 & 3 \\ 3 & 0 & 0 & -3 \\ -1 & -2 & 1 & -1\end{array}\right]$ ，
（a）(8%) Find the determinant of A
（b）（8\％）Compute the rank of A

2．Let the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be linearly independent．Determine whether the following sets of vectors are linearly dependent or independent．
（a）（ $8 \%)\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{3}+\mathbf{v}_{1}\right\}$
（b）（8\％）$\left\{\mathbf{v}_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{1}\right\}$

3．（18\％）Compute the eigenvalues and associated eigenvectors of $A=\left[\begin{array}{ccc}0 & 0 & 3 \\ 1 & 0 & -1 \\ 0 & 1 & 3\end{array}\right]$ ．

4．（4\％）Write down a 3×3 matrix A so that if the vector $v=(x, y, z)$ in \mathbf{R}^{3} is multiplied by A ，the x and y coordinates of v are unchanged，but the z coordinate becomes zero．

5．（10\％）Find a unit vector orthogonal to $u=4 \mathbf{i}-6 \mathbf{j}+\mathbf{k}$ and $v=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ ．

6．Consider $a=(1,-1,0,0), b=(0,1,-1,0)$ ，and $c=(0,0,1,-1)$ ．
（a）（ 8% ）Find the orthonormal vectors A, B, C by Gram－Schmidt operations from a, b ，and c ．
（b）(8%) Show that $\{A, B, C\}$ and $\{a, b, c\}$ are bases for the space of vectors perpendicular to $d=(1,1,1,1)$ ．

7．（8\％）Given $A=\left[\begin{array}{cc}1 & 0 \\ -2 & 1 \\ 1 & 3\end{array}\right]$ and $b=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ ，find the projection of b onto the column space of A by solving $A^{T} A \hat{x}=A^{T} b$ and $p=A \hat{x}$ ．

8．（12\％）Find the least squares parabola for the data points $\{(1,2),(2,5),(3,7),(4,1)\}$ ．

