SA	國 立 雲 林 科 技 大 學	系所:電機系
TOT	100 學年度碩士班暨碩士在職專班招生考試試題	科目:電路學與電力系統

1. (20%)

In Fig. 1, switch S_1 is closed at t=0. Switch S_2 is opened at t=4ms. Obtain *i* for t>0.

2. (20%)

In the circuit of Fig. 2 find v_c (the voltage at node C), i_1 , R_{in} (the input resistance seen by the 9V source), v_2 , and i_2 .

3. (10%)

Obtain the complete power triangle for the circuit shown in Fig. 3, if the total reactive power is 2500 var (inductive). Find the branch powers P_1 and P_2 .

國 立 雲 林 科 技 大 學 100 學年度碩士班暨碩士在職專班招生考試

系所:電機系 科目:電路學與電力系統

4 Synchronous Generator

A 60 Hz, 14-pole, Y-connected, three-phase synchronous generator is rated at 250 MVA, 25.0 kV, power factor 0.9 lagging. The reactances X_d and X_q of this salient-pole synchronous generator are 0.83 Ω and 0.57 Ω respectively. The armature resistance and all rotational losses can be neglected.

- 4.1 (7%) Please sketch the phasor diagram for the internal generated voltage E_A , the armature current I_A , the terminal voltage V_i , the d-axis current I_d , the q-axis current I_q , and the power angle δ .
- 4.2 (7%) What is the internal generated voltage under this rated conditions?
- 4.3 (6%) What is the power angle δ so that the generator can supply maximal power? And what is the maximal power?

5 Unsymmetrical Faults: Line-To-Line Fault

A three-phase generator with a fault through an impedance Z_f between phases B and C as shown in Fig. 5. Assume that the generator is on no-load.

- 5.1 (8%) Please use the symmetrical components analysis to find the fault current in term of zero-, positive-, and negative-sequence impedance (Z_o , Z_+ , Z_-) and Z_f .
- 5.2 (7%) Sketch the sequence network connection for this line-to-line fault.

Symmetrical Components : zero-sequence : Z_o , I_o , V_o positive-sequence : Z_+ , I_+ , V_+ negative-sequence : Z_- , I_- , V_-

Fig. 5

6 Transmission Lines: Steady-State Operation

A three-phase, 60-Hz, completely transposed 345-kV, 170-km line has two 795,000-cmil (403 mm²) 26/2 ACSR conductors per bundle and the following positive-sequence line specific constants: z' = 0.017 + j0.223 Ω/km , $y' = j3.7 \times 10^{-6}$ S/km. Full load at the receiving end of the line is 750 MW at 0.98 p.f. lagging and at 91% of rated voltage. Assuming a medium-length line, determine the following:

- 6.1 (7%) ABCD parameters of the nominal π circuit.
- 6.2 (8%) Sending-end voltage V_s , current I_s , and real power P_s .