1．(20%)
In Fig．1，switch S_{1} is closed at $t=0$ ．Switch S_{2} is opened at $t=4 \mathrm{~ms}$ ．Obtain i for $t>0$ ．

Fig． 1

2．（ 20% ）
In the circuit of Fig． 2 find v_{c}（the voltage at node C ），$i_{l}, \mathrm{R}_{\text {in }}$（the input resistance seen by the 9 V source），ν_{2} ，and i_{2} ．

Fig． 2

3．（10\％）

Obtain the complete power triangle for the circuit shown in Fig．3，if the total reactive power is 2500 var（inductive）．Find the branch powers P_{1} and P_{2} ．

Fig． 3

4 Synchronous Generator

A $60 \mathrm{~Hz}, 14$－pole，Y－connected，three－phase synchronous generator is rated at $250 \mathrm{MVA}, 25.0$ kV ，power factor 0.9 lagging．The reactances X_{d} and X_{q} of this salient－pole synchronous generator are 0.83Ω and 0.57Ω respectively．The armature resistance and all rotational losses can be neglected．
$4.1(7 \%)$ Please sketch the phasor diagram for the internal generated voltage $\boldsymbol{E}_{\boldsymbol{A}}$ ，the armature current I_{A} ，the terminal voltage V_{t} ，the d－axis current I_{d} ，the q－axis current I_{q} ，and the power angle δ ．
$4.2(7 \%)$ What is the internal generated voltage under this rated conditions？
$4.3(6 \%)$ What is the power angle δ so that the generator can supply maximal power？And what is the maximal power？

5 Unsymmetrical Faults：Line－To－Line Fault
A three－phase generator with a fault through an impedance Z_{f} between phases B and C as shown in Fig．5．Assume that the generator is on no－load．
$5.1(8 \%)$ Please use the symmetrical components analysis to find the fault current in term of zero－，positive－，and negative－sequence impedance $\left(Z_{0}, Z_{+}, Z_{\text {．}}\right.$ ）and Z_{f} ．
$5.2(7 \%)$ Sketch the sequence network connection for this line－to－line fault．

Symmetrical Components ： zero－sequence ：$Z_{o,} I_{o}, V_{o}$ positive－sequence ：Z_{+}, I_{+}, V_{+} negative－sequence ：Z, I, I, V ．

Fig． 5

6 Transmission Lines：Steady－State Operation

A three－phase， $60-\mathrm{Hz}$ ，completely transposed $345-\mathrm{kV}, 170-\mathrm{km}$ line has two $795,000-\mathrm{cmil}$（ 403 mm^{2} ） $26 / 2$ ACSR conductors per bundle and the following positive－sequence line specific constants：$z^{\prime}=0.017+\mathrm{j} 0.223 \Omega / \mathrm{km}, y^{\prime}=\mathrm{j} 3.7 \times 10^{-6} \mathrm{~S} / \mathrm{km}$ ．Full load at the receiving end of the line is 750 MW at 0.98 p．f．lagging and at 91% of rated voltage．Assuming a medium－length line，determine the following：
$6.1(7 \%) A B C D$ parameters of the nominal π circuit．
$6.2(8 \%)$ Sending－end voltage V_{s} ，current I_{s} ，and real power P_{s} ．

