國立中正大學103學年度碩士班招生考試試題

系所別:生命科學系分子生物

第1節

第|頁,共3頁

科目:生物化學

E.	單選題 (2% each, total 40%)		4,			
1. Which of the following amino acids are more likely to be found in a protein's interior away f solvent molecules?						
	A) Val, Leu, Ile, Met, and Phe	B) Ser,	Thr, Asn, Gln, and Tyr			
	C) Arg, His, Lys, Asp, and Glu	D) All	of the above			
	E) None of the Above					
2.	Given multiple enzymes that can catalyze the same reaction, which of the following would be the best					
	choice, given the kinetic parameters below	?				
	A) Enzyme 1: $K_m = 10$, $V_{max} = 10$		zyme 2: $K_m = 0.5$, $V_{max} = 1$			
	C) Enzyme 3: $K_m = 2$, $V_{max} = 1$	D) Enz	zyme 4: $K_m = 0.1$, $V_{max} = 10$			
	E) Enzyme 5: $K_m = 0.5$, $V_{max} = 5$		•			
_	m '1-1-1	n with a n	K around and an amino group with a pK			
3.		p wiiii a p	K around, and an amino group with a pK			
ģ.	near	d O N				
	A) 1.1, and 12.1 B) 6.5, and 8.0 C) 3.3, and 10.5 D) 2.2, and 9.4.					
	C) 3.3, and 10.5 D) 2.2	·				
4.	Serine and threonine are polar amino acids due to					
	A) reactive hydroxyl group in the side chain B) reactive alcoholic group in the side chain					
	C) reactive keto group in the side chain	Ι	D) reactive aldehyde group in the side chai.			
5.	Which of the following is an example of tertiary structure in a protein?					
	A) A multimeric protein B		An α-helix			
	C) A β-pleated sheet	D) A (globular domain			
6	The peptide, Val-Lys-Glu-Met-Ser-Trp-Arg-Ala, was digested with cyanogen bromide (CNBr) to produce:					
٠.	A) Val-Lys + Glu-Met-Ser + Trp-Arg-Ala		B) Val-Lys-Glu-Met-Ser-Trp + Arg-Ala			
	C) Val-Lys-Glu-Met + Ser-Trp-Arg-Ala		D) Val-Lys-Glu + Met-Ser-Trp-Arg-Ala			
	C) var-Lys Gid Not 7 Sor 12p 12g 12m		, .			
7	In the enzyme-catalyzed reaction shown be	elow, what	will be the effect on substances A, B, C, and D of			
	nactivating the enzyme labeled <u>E2</u> ? A(E1)> B(E2)> C(E3)>D					
	A) A B C and D will all still be produce	. , ed	B) A, B, and C will still be produced, but not D			
	C) A and B will still be produced, but not		D) A will still be produced, but not B, C, or D			
	C) A and B win sim be produced, but not	0012	2,			
8.	On the x and y axes of a Lineweaver-Burk plot, the largest values of substrate concentration will be					
	found:		B) At the intercept on the y axis			
	A) At the top of the y axis		D) At the intercept on the x axis			
	C) At the right end of the x axis		D) At the intercept on the x axis			
	E) At the origin					

國立中正大學103學年度碩士班招生考試試題

系所別:生命科學系分子生物

第1節

第2頁,共3頁

科目: 生物化學

9.	The cleavage	specificity	of trypsin	and chymotry	ypsin depen	d in part on the
----	--------------	-------------	------------	--------------	-------------	------------------

- A) proximity of Ser 195 to the active site or specificity pocket
- B) size, shape, and charge of the active site or specificity pocket
- C) presence of a low-barrier hydrogen bond in the active site or specificity pocket
- D) absence of water in the active site
- 10. Affinity chromatography deals with the
 - A) specific binding of a protein constituents for another molecule
 - B) protein protein interaction
- C) protein carbohydrate interaction
- D) none of the above

11. A purified protein sample contains 10 µg of protein and has an enzyme activity of 1 m mole of ATP synthesized/sec (1 unit). What is the specific activity of the final purified sample?

A) 1,000 units/mg

B) 10,000 units/mg

C) 100,000 units/mg

D) 1,000,000 units/mg

- 12. Bisphosphoglycerate (BPG) cannot bind to the oxygenated R state of hemoglobin because
 - A) it is displaced from the heme by oxygen
 - B) it is displaced from the heme by movement of the proximal histidine
 - C) its binding pocket becomes too small to accommodate BPG
 - D) BPG binds to the R state with the same affinity as the T state
- 13. When $[S] = K_M$, the velocity of an enzyme catalyzed reaction is about:

A) 0.1*V_{max}.

B) $0.2*V_{max}$.

C) 0.3*V_{max}.

D) 0.5*V_{max},

E) 0.9*V_{max}.

- 14. In SDS-PAGE, the protein sample is first
 - A) treated with a reducing agent and then with anionic detergent followed by fractionation by electrophoresis
 - B) fractionated by electrophoresis then treated with an oxidizing agent followed by anionic detergent
 - C) treated with a oxidizing agent and then with anionic detergent followed by fractionation by electrophoresis
 - D) none of the above
- 15. Which reagent is best suited for determination of the amino acid sequence of a small peptide

A) Ninhydrin

B) Phenyl iosthiocynate

C) CNBr

D) Trypsin

- 16. Which of the following statements about protein structure is correct?
 - A) α-helix is stabilized primarily by ionic interactions between the side chains of amino acids.
 - B) The formation of the disulfide bond in a protein requires that the two participating cysteine residues be adjacent to each other in the primary sequence of the protein.
 - C) The stability of quaternary structure in proteins is mainly due to covalent bonds among the subunits.
 - D) The denaturation of proteins always leads to irreversible loss of secondary and tertiary structure.
 - E) The information for the correct folding of a protein is contained in the specific sequence of amino acids along the polypeptide chain.

國立中正大學103學年度碩士班招生考試試題

系所別:生命科學系分子生物

第1節

第3頁,共3頁

科目:生物化學

- 17. The primary stabilizing force of protein secondary structure is:
 - A) Ionic bonds.
- B) Covalent bonds.
- C) Van der Waals forces.

- D) Hydrogen bonds.
- E) None of the Above
- 18. The local spatial arrangement of a polypeptide's backbone atoms without regard to the conformation of its side chains can be called?
 - A) Primary structure
- B) Secondary structure
- C) Tertiary structure

- D) Quaternary structure
- E) None of the Above.
- 19. Molar absorbtivity is the measure of the
 - A) amount of light absorbed per unit length
 - B) amount of light absorbed per unit concentration
 - C) amount of light reflected and absorbed per unit concentration
 - D) None of the above
- 20. Buffer solutions
 - A) will always have a pH of 7
 - B) are rarely found in living systems
 - C) cause a decrease in pH when acids are added to them
 - D) tend to maintain a relatively constant pH

II. 問答題(60%)

- 1. Describe the molecular mechanism for insulin in regulation of glycogen synthesis. (6%)
- 2. Explain why less ATP is made from the reoxidation of FADH2 as compared to NADH. (6%)
- 3. Give five coenzymes that are required in the conversion of pyruvate into acetyl-CoA and CO2. (5%)
- 4. Ammonia is toxic to animals. Why? (3%)
- 5. Draw the structure of a mitochondrion and indicate the sites of β-oxidation and ATP synthase. (6%)
- 6. If the selectivity filter binds the potassium ion tightly in the potassium channel, how are ions released to pass through the membrane? (4%)
- 7. Aspirin that can reduce the formation of blood clot and has a function in anti-inflammation. Why? (6%)
- 8. Why is it more efficient to store energy as lipid rather than as glycogen? (6%)
- 9. List three major enzymes used in recombinant DNA technology. (6%)
- 10. Describe the dependence of the melting point of a fatty acid upon (a) chain length and (b) unsaturation. (6%)
- 11. Describe the function and the role of Na⁺K⁺ ATPase in animal cells. (6%)