第2節 第 / 頁, 共 4 頁 | ; | | | | | , | | | | | |----|--|--|---|--|---|--|--|--|--| | | | tte bette | n | ÷ | | | | | | | | 、 選擇題: (30) | 題,母題22 | 分, 共60分) | | | | | | | | 1. | Which of the foll | owing amin | o acids contains su | lfur? | | | | | | | | (A) Alanine | (B) Cystein | e (C) Serine | (D) Valine | (E) Arginine | | | | | | 2. | The strand on which DNA replication is continuous is called the: | | | | | | | | | | | (A) Leading strand | | (B) Lagging stran | | (C) Template strand | | | | | | | (D) Major strand | | (E) Minor strand | | , | | | | | | | | | | | | | | | | | 3. | Which of the following removes excessive supercoils ahead of the replication fork? | | | | | | | | | | | (A) DNA Helicas | e | (B) Topoisomera | , - | DNA Polymerase | | | | | | | (D) DNA Ligase | | (E) Single Stran | ın | | | | | | | 4. | DNA replicates t | brough wha | nt process? | | | | | | | | | (A) Continuous | (C) Conservative replication | | | | | | | | | | (D) Semi-conserv | - | | (E) Dispersive r | | | | | | | | | | | | | | | | | | 5. | Okazaki fragments are found on which of the following strands of DNA? | (A) leading stran | | (B) lagging strand | ` ' | aplate strand | | | | | | | (A) leading stran
(D) all of the abo | | (B) lagging strand
(E) none of the abo | ` ' | ipiate strauu | | | | | | 6. | (D) all of the abo | ove | (E) none of the abo | ove | <u> </u> | | | | | | 6. | (D) all of the abo | ove | | ove | <u> </u> | | | | | | | (D) all of the abo What protein sys (A) DnaA | ove
nthesizes RI
(B) DnaB | (E) none of the about | DNA replication (D) DnaG | in <i>E.coli</i> ?
(E) RNaseH | | | | | | | (D) all of the abo What protein sys (A) DnaA Which of the foll | ove
nthesizes RI
(B) DnaB
lowing state | (E) none of the about NA primers during (C) DnaC | DNA replication (D) DnaG t DNA polymera | in <i>E.coli?</i> (E) RNaseH | | | | | | | (D) all of the abo What protein sy (A) DnaA Which of the foll (A) It is a proces | ove
nthesizes RI
(B) DnaB
lowing state
ssive enzyme | (E) none of the about NA primers during (C) DnaC ements is true about e. (B) It is a holoence | DNA replication (D) DnaG t DNA polymera | in <i>E.coli</i> ? (E) RNaseH se ains proofreading activity. | | | | | | | (D) all of the abo What protein sy (A) DnaA Which of the fol (A) It is a proces (D) It requires a | nthesizes RI
(B) DnaB
lowing state
ssive enzymo
short prime | (E) none of the about NA primers during (C) DnaC ements is true about e. (B) It is a holoence | DNA replication (D) DnaG t DNA polymera | in <i>E.coli?</i> (E) RNaseH | | | | | | | (D) all of the abo What protein sy (A) DnaA Which of the foll (A) It is a proces | nthesizes RI
(B) DnaB
lowing state
ssive enzymo
short prime | (E) none of the about NA primers during (C) DnaC ements is true about e. (B) It is a holoence | DNA replication (D) DnaG t DNA polymera | in <i>E.coli</i> ? (E) RNaseH se ains proofreading activity. | | | | | | 7. | (D) all of the about the protein syn (A) DnaA Which of the fol (A) It is a process (D) It requires a (E) All of the about the process (D) the protein synthesis (E) All of the about about the protein synthesis (E) All of the about a | nthesizes RI (B) DnaB lowing state sive enzyme short prime | (E) none of the about NA primers during (C) DnaC ments is true about e. (B) It is a holoenzer or oligonucleotid | DNA replication (D) DnaG t DNA polymera zyme. (C) It contlet to start synthe | in <i>E.coli?</i> (E) RNaseH se ains proofreading activity. sizing new DNA strands. | | | | | | 7. | (D) all of the about the protein syn (A) DnaA Which of the folication (A) It is a process (D) It requires a (E) All of the about the protein subunit of the subunit of the subunit of the about the subunit of o | nthesizes Ri (B) DnaB lowing state sive enzyme short prime ove | (E) none of the about NA primers during (C) DnaC ements is true about e. (B) It is a holoenzer or oligonucleotid | DNA replication (D) DnaG t DNA polymera zyme. (C) It cont le to start synthe | in <i>E.coli?</i> (E) RNaseH se ains proofreading activity. sizing new DNA strands. | | | | | | 7. | (D) all of the about the protein syn (A) DnaA Which of the fol (A) It is a process (D) It requires a (E) All of the about the process (D) the protein synthesis (E) All of the about about the protein synthesis (E) All of the about a | nthesizes RI (B) DnaB lowing state sive enzyme short prime ove | (E) none of the about NA primers during (C) DnaC ments is true about e. (B) It is a holoenzer or oligonucleotid | DNA replication (D) DnaG t DNA polymera zyme. (C) It cont le to start synthe | in E.coli? (E) RNaseH se ains proofreading activity. sizing new DNA strands. | | | | | | 7. | (D) all of the about the protein syntax (A) DnaA Which of the folion (A) It is a process (D) It requires a (E) All of the about the protein (A) α subunit (D) β subunit | nthesizes RI (B) DnaB dowing state sive enzyme short prime ove | (E) none of the about NA primers during (C) DnaC ements is true about e. (B) It is a holoenzer or oligonucleotid emerase III increase (B) γ complex (E) φ subunit | DNA replication (D) DnaG t DNA polymera zyme. (C) It cont le to start synthe es its processivity (C) E s | a in E.coli? (E) RNaseH se ains proofreading activity. sizing new DNA strands. | | | | | | 7. | (D) all of the about the protein syn (A) DnaA Which of the folion (A) It is a process (D) It requires a (E) All of the about the process (A) α subunit (D) β subunit (D) β subunit | nthesizes RI (B) DnaB lowing state sive enzyme short prime ove of DNA poly | (E) none of the about NA primers during (C) DnaC ments is true about e. (B) It is a holoenzer or oligonucleotid merase III increase (B) γ complex (E) φ subunit hanisms cannot be | DNA replication (D) DnaG t DNA polymera zyme. (C) It cont le to start synthe es its processivity (C) & s used to repair th | in E.coli? (E) RNaseH se ains proofreading activity. sizing new DNA strands. ? ubunit | | | | | | 7. | (D) all of the about the protein syntax (A) DnaA Which of the folion (A) It is a process (D) It requires a (E) All of the about the protein (A) α subunit (D) β subunit | nthesizes RI (B) DnaB lowing state sive enzyme short prime ove of DNA poly clowing mecivation | (E) none of the about NA primers during (C) DnaC ements is true about e. (B) It is a holoenzer or oligonucleotid emerase III increase (B) γ complex (E) φ subunit hanisms cannot be (B) Base excision reserved. | DNA replication (D) DnaG t DNA polymera zyme. (C) It cont le to start synthe es its processivity (C) & s used to repair th | in E.coli? (E) RNaseH se ains proofreading activity. sizing new DNA strands. /? ubunit tymine dimer? ucleotide excision repair | | | | | ## 國立中正大學 103 學年度碩士班招生考試試題系所別:生命科學系分子生物 科目:分子生物學 第2節 第 2 頁, 共 4 頁 | 10. Northern bl | otting is used fo | or separation | and detection | on of: | | | | | | |---------------------------|---|-----------------|---|--------------|---------------------------|-------------------|--|--|--| | (A) DNA | (B) mRNA | (C) protein | (D) protei | n-DNA inte | raction | (E) organelles | | | | | 11. Telomerase: | : | | | | | | | | | | (A) joins Ol | kazaki fragment | ts on the laggi | ing strand | | | | | | | | (B) catalyze | (B) catalyzes DNA replication at the ends of chromosomes | | | | | | | | | | (C) initiates | initiates DNA replication at the origin | | | | | | | | | | (D) requires | ATP | | | | | • | | | | | (E) enhance | s transcription | | | | | | | | | | 12. Which of th | e following pro | teins is not re | quired for E | NA replica | tion in <i>E</i> . | coli? | | | | | (A) DNA he | (A) DNA helicase(D) DNA glycosylase. | | (B) Primase (C) DNA ligase
(E) Topoisomerase | | | | | | | | (D) DNA gly | | | | | | | | | | | 13. In <i>E. coli</i> , w | hich which of t | he following p | rotein is res | sponsible fo | r detectin | g mismatched | | | | | DNA? | • | | | | | | | | | | (A) MutL | (B) MutH | (C) I | MutJ | (D) MutS | (I | E) RecJ | | | | | | | | | | | -, | | | | | 14. The unique | enzyme that re | trotransposon | is encode an | d does not o | exist in h | ıman cells is: | | | | | (A) DNA po | (A) DNA polymerase (D) DNA ligase. | | (B) Topoisomerase (E) DNA helixase | | (C) Reverse Transcriptase | | | | | | (D) DNA lig | | | | | • | | | | | | 15. What is the | main function (| of DNA polym | ierase I in <i>E</i> | . coli? | | | | | | | (A) Repair | (A) Repair (D) Degradation | | (B) Methylation(E) Transcription | | (C) Splicing | | | | | | (D) Degrada | | | | | 1 | | | | | | 16. The TATA b | ox is bound by | ? | | | | | | | | | (A) TFIIB | (B) TFIID | (C) TFIIE | (D) TFIIF | (E) TFI | IH | | | | | | 17. The function | n and componer | nts of SL1 fac | tor in Polyn | aerase I pro | moter tr | anscription | | | | | (A) TFIIB | (B) TFIID | (C) TFIIF | (D) TFIIH | (E) TFI | IS | | | | | | 18. The antibio | tic puromycin c | an terminates | translation | by mimick | ing the st | ructure of? | | | | | (A) 23S rRN | | | | | _ | (noncoding RNA) | | | | | 19. Which mole | cule can drive t | ranslocation | of ribosome | by displaci | ng the tR | NA on the A site? | | | | | (A) EF-Tu | (B) EF-Ts | (C) EF- | | | - | nthetase | | | | 第2節 第3頁,共4頁 | 20. The large subunit of RNA polymerase II has a C-terminal domain (CTD), which contains | |--| | serine/threonine sites to be phosphorylated by: | | (A) TFIIA (B) TFIIB (C) TFIIE (D) TFIIF (E) TFIIH | | (A) IFHA (D) IFHE (D) IFHE (E) IFHE | | 21. The shape of intron released by Group I self-splicing is? | | | | (A) linear (B) Y-shape (C) lariat (D) circular (E) triangle | | 22 F-N | | 22. Follow up the previous question, which nucleotide is required for Group I self-splicing? | | (A) ATP (B) TTP (C) GTP (D) CTP (E) UTP | | | | 23. microRNA is transcribed by: | | (A) Reverse transcriptase (B) RNA-dependent RNA polymerase | | (C) RNA polymerase III (D) RNA polymerase II (E) RNA polymerase I | | | | 24. When <i>E.coli</i> is infected by phage λ , which viral protein is proved to be the factor for | | regulating anti-termination at <u>RNA</u> level during life cycle of phage? | | (A) cI (B) cII (C) cro (D) N (E) Q | | | | 25. Which rRNA can pair with the ribosome-binding site of mRNA (Shine-Dalgarno sequence) | | during translation? | | (A) 5S RNA (B) 5.8S RNA (C) 16S RNA (D) 18S RNA (E) 23S RNA | | • | | 26. Which factor can convert core-enzyme into holo-enzyme in bacterial RNA polymerase? | | (A) α-subunit (B) β-subunit (C) β'-subunit | | (D) σ–subunit (E) ω- subunit | | | | 27. What is the correct composition of histone core of nucleosome? | | (A) (H2A, H2B) ₃ (H3,H4) ₁ (B) (H2A, H2B) ₂ (H3,H4) ₂ | | (C) $(H2A, H2B)_1(H3,H4)_3$ (D) $(H2A, H2B)_2(H1,H3)_2$ (E) $(H2A, H2B)_3(H1,H3)_1$ | | (-, () | | 28. In precursor mRNA splicing, U6 snRNA can pair with two snRNAs. These two snRNAs are: | | (A) U1 and U2 (B) U1 and U4 (C) U2 and U4 (D) U2 and U5 (E) U4 and U5 | | (c) of and of (c) of and of (D) of and of (D) of and of | | 29. Which enzyme does NOT involved in RNA editing? | | (A) RNA ligase (B) terminal uridylyl transferase (TUTase) (C) aminase | | (D) exo-nuclease (E) endo-nuclease | | (D) CAU-RECEESE (D) CAUG-RUCIESSC | ## 國立中正大學 103 學年度碩士班招生考試試題系所別:生命科學系分子生物 科目:分子生物學 第2節 第4頁,共4頁 - 30. Which protein is the cap-binding protein during translation? - (A) eIF2 - (B) eIF4A - (C) eIF4E - (D) eIF4G - (E) eIF5E - 二. 問答題: (7題, 共40分) - 31. Please describe the functions of the following molecules: (a 至 h 任選四個作答,每個 2 分, 多寫不計分) - a. DNA-PK - b. RAG1 and RAG2 - c. γ subunit of DNA polymerase III - d. UvrAB - e. MutH - f. DNA glycosylase - g. Spo11 - h. LexA - 32. Please describe the initiation process of DNA replication in E. coli. (6 points) - 33. Please describe the homologous recombination process in E. coli. (6 points) - 34. Please explain how does the cell deal with the translational problem of non-stop mRNA both in prokaryote and eukaryote? (5 points) - 35. Please explain the Trp attenuation model in E. coli. (5 points) - 36. Please describe the mechanisms of transcriptional termination in prokaryote. (5 points) - 37. Please draw the structure of tRNA and point out the direction (5' to 3') as well as the positions of the acceptor arm, TψC arm, anticodon arm, D arm and extra arm, respectively. (5 points)