國立中正大學103學年度碩士班招生考試試題

系所別:數學系應用數學

第 2 節

第1頁,共1頁

科目:線性代數

For the following problems, P_n denotes the vector space of all polynomials with real coefficients of degree less than or equal to n, V^{\perp} denotes the orthogonal compliment of vector space V, and A^T denotes the transpose of the matrix A.

- 1. Let $V = \{[x_1, x_2] | x_1$ is a real number and x_2 is a positive number $\}$ with addition defined by $[x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1 + 1, x_2y_2]$ and with scalar multiplication defined by $r[x_1, x_2] = [rx_1 + r 1, (x_2)^r]$. (for example $[1, 3] \oplus [-3, 7] = [-1, 21]$, $[2, 3] = [2 + 2 1, 3^2] = [3, 9]$) (a) Find the additive identity $\vec{0}$ and the additive inverse of $\vec{v} = [3, 2]$. (b) Show the scalar multiplication satisfies the distributive property $r(\vec{x} \oplus \vec{y}) = r\vec{x} \oplus r\vec{y}$. (13%)
- 2. Find a basis for the subspace $V = \{p(x)|p(x) = x^4p(\frac{-1}{x}) \text{ for } p(x) \in P_4\}.$ (7%)
- 3. Let $V = \{p(x)|p(x) \text{ is a polynomial without constant term } \}$ be the subspace of polynomial space P with inner product $\langle p(x), q(x) \rangle = \int_0^1 x p(x) q(x) dx$. Show that $V^{\perp} = \{0\}$. (5%)
- 4. The matrix A is row-equivalent to the matrix B.

- (a) Find a basis for the nullspace of A. (5%)
- (b) Find vectors $\vec{a} = [a_1, a_2, \dots, a_5]^T$ and $\vec{b} = [b_1, b_2, \dots, b_5]^T$. (5%)
- (c) Find bases for the row space and the column space of A, respectively. (5%)
- 5. Let \vec{v} be a column vector in \mathbb{R}^n . Define the matrix $A = I \alpha \vec{v} \vec{v}^T$. Find the value of α so that $A^{-1} = A$. Solve the linear system $A\vec{x} = \vec{b}$ where $\vec{v} = [1, 0, 2, 0, -1]^T$ and $\vec{b} = [0, 11, -1, 9, 1]^T$. (10%)
- 6. Let $\{\phi_0(x), \phi_1(x), \dots, \phi_n(x)\}$ be an orthogonal basis for P_n with a given inner product denoted by $\langle \cdot, \cdot \rangle$. If each $\phi_k(x)$ is a monic (the leading coefficient is 1) polynomial of degree k, show that $\phi_{k+1}(x) x\phi_k(x) = -\alpha_k\phi_k(x) \beta_k\phi_{k-1}(x)$, where $\alpha_k = \frac{\langle x\phi_k(x),\phi_k(x)\rangle}{\langle \phi_k(x),\phi_k(x)\rangle}$ and $\beta_k = \frac{\langle \phi_k(x),\phi_k(x)\rangle}{\langle \phi_{k-1}(x),\phi_{k-1}(x)\rangle}$ for $k=1,2,\ldots,n-1$. (8%)
- 7. Let $\{1, x, x^2 \frac{1}{3}, x^3 \frac{3}{5}x, \phi_4(x)\}$ be an orthogonal basis for P_4 with respect to the inner product $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x) dx$. Find $\phi_4(x)$. (7%)
- 8. Consider the vector space P_2 of polynomials of degree at most 2, and let $T: P_2 \to P_2$ be the linear transformation such that $T(x^2 1) = -x^2 + 1$, $T(x) = x^2 x 1$ and $T(1) = x^2 3x + 1$.
 - (a) Find a matrix representation for T associated with the ordered basis $\{x^2 1, x, 1\}$. (5%)
 - (b) Find p(x) such that T(p(x)) = x + 2. (5%)
 - (c) Find eigenvalues λ and the associated eigenfunctions p(x) for T. (i.e. $T(p(x)) = \lambda p(x)$) (5%)
 - (d) Find $T^8(x^2 2x + 1)$ (5%)
- 9. Determine whether the statement is true or false. If it is true, prove it, otherwise, give a counter example. (15%)
 - (a) If S is a subspace of an inner product space V, then $(S^{\perp})^{\perp} = S$.
 - (b) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Let the set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ be linearly independent in \mathbb{R}^n , then the set $\{T(\vec{x}_1), T(\vec{x}_2), \dots, T(\vec{x}_k)\}$ is also linearly independent.
 - (c) Let \vec{v} be a unit column vector in \mathbb{R}^n . The characteristic polynomial $(\det(xI-A))$ of the matrix $A = \vec{v}\vec{v}^T$ is $x^{n-1}(x-1)$.