第 / 頁,共 / 頁

科目:線性代數

There are six problems and 100 points in total.

- 1. (12 pts.) Let W be the subspace of \mathbb{R}^3 spanned by $a_1 = [1, 1, -1]$, $a_2 = [0, 1, -2]$, $a_3 = [2, 3, -4]$, and $a_4 = [0, 3, -6]$.
 - (a) Determine whether the vector $\mathbf{b} = [1, -1, 3]$ lies in W.
 - (b) Find a basis for W.
- 2. (18 pts.) Let $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 2 & 1 & -1 & 0 \\ 3 & 0 & -3 & 1 \\ 4 & 1 & -3 & 0 \end{bmatrix}$.
 - (a) Determine the rank of A.
 - (b) Find a basis for the column space and a basis for the row space of A.
 - (c) Find a basis for the nullspace of A.
- 3. (18 pts.) Let A and B be $n \times n$ matrices.
 - (a) Prove that $rank(AB) \leq rank(A)$.
 - (b) Prove that $rank(AB) \leq rank(B)$.
 - (c) Find a necessary and sufficient condition for rank(AB) = rank(B).
- **4.** (12 pts.) Let T be the linear operator on the vector space $P_2 = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}$ given by

$$T(f(x)) = f(1) + f'(0)x + 2f''(0)x^{2}.$$

- (a) Give the matrix of T relative to the standard basis $\{1, x, x^2\}$ of P_2 .
- (b) Is T diagonalizable?
- 5. (20 pts.) Suppose that a 4×4 matrix A has eigenvalues 1, -1, 2, and -2. Find the trace and determinant of $A^6 5A^4 + 4I$.
- 6. (20 pts.) Find a unitary matrix U and a diagonal matrix D such that $U^{-1}AU = D$, where $A = \begin{bmatrix} 1 & -i & 0 \\ i & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.