系所別:數學系

第1節

第/頁,共/頁

科目:高等微積分

- (20%) 1. Let f be a real-valued function defined on [a, b] and $x_0 \in [a, b]$. Show that the following two properties are equivalent.
 - (a) for any $\varepsilon > 0$, there exists a constant $\delta > 0$ so that for $x \in (x_0 \delta, x_0 + \delta) \cap [a, b]$, we have $|f(x) f(x_0)| < \varepsilon$.
 - (b) for any sequence $\{c_n\}_{n=1}^{\infty}\subset [a,b]$ satisfying $\lim_{n\to\infty}c_n=x_0$, we have $\lim_{n\to\infty}f(c_n)=f(x_0)$
- (20%) 2. Let $\{a_n\}_{n=1}^{\infty}$ be a real-valued sequence satisfying

$$\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = 0.$$

Set $f(x) = \sum_{n=1}^{\infty} a_n x^n$, for $x \in (-\infty, \infty)$. Show that

- (a) f is continuous in $(-\infty, \infty)$, and
- (b) the derivative f' is also continuous in $(-\infty, \infty)$ and we have

$$f'(x) = \sum_{n=1}^{n} na_n x^{n-1}$$
, for $x \in (-\infty, \infty)$.

- (20%) 3. Let $\{a_n\}_{n=1}^{\infty}$ be a real-valued sequence and $\sum_{n=1}^{\infty} |a_n|$ exist. Set $f(x) = \sum_{n=1}^{\infty} a_n \cos nx$, for $x \in [-\pi, \pi]$. Show that
 - (a) the function f is continuous on $[-\pi, \pi]$, and
 - (b) the integral

$$\int_{-\pi}^{\pi} f^2(x) dx = \pi \sum_{n=1}^{\infty} a_n^2.$$

- (20%) 4. Show the following
 - (a) for $\varepsilon \in (0,1]$, we have $\lim_{\varepsilon \to 0} \varepsilon^{\frac{1}{100}} \ln \varepsilon = 0$,

(b)
$$\lim_{x \to \infty} \frac{x^{100}}{e^x} = 0$$
,

and find the value of

(c)
$$\int_0^1 x^{-\frac{99}{100}} \ln x dx = ?$$
,

(d)
$$\int_0^\infty e^{-x} \cos(5x) dx = ?.$$

- (20%) 5. Let f be a bounded variation function defined on [a, b]. Show that
 - (a) there exist two increasing functions g and h defined on [a, b] so that

$$f=g-h\ ,$$

and

(b) f is continuous on [a, b] except possibly countable many points.

科目:線性代數

There are six problems and 100 points in total.

- 1. (12 pts.) Let W be the subspace of \mathbb{R}^3 spanned by $a_1 = [1, 1, -1]$, $a_2 = [0, 1, -2]$, $a_3 = [2, 3, -4]$, and $a_4 = [0, 3, -6]$.
 - (a) Determine whether the vector $\mathbf{b} = [1, -1, 3]$ lies in W.
 - (b) Find a basis for W.
- 2. (18 pts.) Let $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 2 & 1 & -1 & 0 \\ 3 & 0 & -3 & 1 \\ 4 & 1 & -3 & 0 \end{bmatrix}$.
 - (a) Determine the rank of A.
 - (b) Find a basis for the column space and a basis for the row space of A.
 - (c) Find a basis for the nullspace of A.
- 3. (18 pts.) Let A and B be $n \times n$ matrices.
 - (a) Prove that $rank(AB) \leq rank(A)$.
 - (b) Prove that $rank(AB) \leq rank(B)$.
 - (c) Find a necessary and sufficient condition for rank(AB) = rank(B).
- 4. (12 pts.) Let T be the linear operator on the vector space $P_2 = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}$ given by

$$T(f(x)) = f(1) + f'(0)x + 2f''(0)x^{2}.$$

- (a) Give the matrix of T relative to the standard basis $\{1, x, x^2\}$ of P_2 .
- (b) Is T diagonalizable?
- 5. (20 pts.) Suppose that a 4×4 matrix A has eigenvalues 1, -1, 2, and -2. Find the trace and determinant of $A^6 5A^4 + 4I$.
- 6. (20 pts.) Find a unitary matrix U and a diagonal matrix D such that $U^{-1}AU = D$, where $A = \begin{bmatrix} 1 & -i & 0 \\ i & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

系所別:數學系應用數學

第1節

第/頁,共/頁

科目:微積分

Show all your work.

- 1. (10 pts.) A light is 4 miles from a straight shoreline. The light revolve at the rate of 2 rev/min. Find the speed of the spot of light along the shore when the light spot is 2 miles past the point on the shore closest to the source of light.
- 2. (10 pts.) Sketch the graph of $f(x) = e^{-x} \sin x$ for $x \ge 0$, and determine as many as possible of the key features such as range, intercepts, relative extrema, inflection points, asymptotes, and concavity.
- 3. (10 pts.) Minimize $f(x, y, z) = 2x^2 + 3y^2 + 4z^2$ subject to x + y = 4 and x 2y + 5z = 3.
- 4. (10 pts.) Find the equation for the tangent line to the curve

$$y = F(x) = \int_{1}^{\sqrt{x}} \frac{t^2 + t + 1}{\sqrt{3t^2 + 1}} dt$$
 at $x = 1$.

- 5. (10 pts.) Find the volume of the solid D bounded below by the paraboloid $z = x^2 + y^2$ and above by the plane 2x + z = 3.
- 6. (10 pts.) Let $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$
 - (1) Use the definition of the derivative to prove that f is differentiable at x = 0.
 - (2) Prove or disprove that f'(x) is continuous at x = 0.
- 7. (10 pts.) Let $a_n = \left(1 + \frac{1}{n}\right)^n$, n = 1, 2, 3, ...
 - (1) Show that the sequence $\{a_n\}_{n=1}^{\infty}$ converges.
 - (2) Approximate $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ correct to four decimal places.
- 8. (10 pts.) Let $f(x, y, z) = z(x y)^5 + xy^2z^3$.
 - (1) Find the directional derivative of f at (2, 1, -1) in the direction of the outward normal to the sphere $x^2 + y^2 + z^2 = 6$.
 - (2) In what direction is the directional derivative at (2, 1, -1) largest?
- 9. (20 pts.) Define $F(s) = L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$. And, the inverse $L^{-1}\{F(s)\}$ is the function f(t) such that $L\{f(t)\} = F(s)$.
 - (1) Show that $L\left\{e^{at}f(t)\right\} = F(s-a)$ and $L\left\{tf(t)\right\} = -F'(s)$.
 - (2) Find $L\{t^n\}$, $L\{\cos at\}$ (with s-a>0), $L\{t\cos 2t\}$, and $L^{-1}\left\{\frac{5}{s}\right\}$.

系所別:數學系應用數學

第 2 節

第1頁,共1頁

科目:線性代數

For the following problems, P_n denotes the vector space of all polynomials with real coefficients of degree less than or equal to n, V^{\perp} denotes the orthogonal compliment of vector space V, and A^T denotes the transpose of the matrix A.

- 1. Let $V = \{[x_1, x_2] | x_1$ is a real number and x_2 is a positive number $\}$ with addition defined by $[x_1, x_2] \oplus [y_1, y_2] = [x_1 + y_1 + 1, x_2y_2]$ and with scalar multiplication defined by $r[x_1, x_2] = [rx_1 + r 1, (x_2)^r]$. (for example $[1, 3] \oplus [-3, 7] = [-1, 21]$, $[2, 3] = [2 + 2 1, 3^2] = [3, 9]$) (a) Find the additive identity $\vec{0}$ and the additive inverse of $\vec{v} = [3, 2]$. (b) Show the scalar multiplication satisfies the distributive property $r(\vec{x} \oplus \vec{y}) = r\vec{x} \oplus r\vec{y}$. (13%)
- 2. Find a basis for the subspace $V = \{p(x)|p(x) = x^4p(\frac{-1}{x}) \text{ for } p(x) \in P_4\}.$ (7%)
- 3. Let $V = \{p(x)|p(x) \text{ is a polynomial without constant term } \}$ be the subspace of polynomial space P with inner product $\langle p(x), q(x) \rangle = \int_0^1 x p(x) q(x) dx$. Show that $V^{\perp} = \{0\}$. (5%)
- 4. The matrix A is row-equivalent to the matrix B.

- (a) Find a basis for the nullspace of A. (5%)
- (b) Find vectors $\vec{a} = [a_1, a_2, \dots, a_5]^T$ and $\vec{b} = [b_1, b_2, \dots, b_5]^T$. (5%)
- (c) Find bases for the row space and the column space of A, respectively. (5%)
- 5. Let \vec{v} be a column vector in \mathbb{R}^n . Define the matrix $A = I \alpha \vec{v} \vec{v}^T$. Find the value of α so that $A^{-1} = A$. Solve the linear system $A\vec{x} = \vec{b}$ where $\vec{v} = [1, 0, 2, 0, -1]^T$ and $\vec{b} = [0, 11, -1, 9, 1]^T$. (10%)
- 6. Let $\{\phi_0(x), \phi_1(x), \dots, \phi_n(x)\}$ be an orthogonal basis for P_n with a given inner product denoted by $\langle \cdot, \cdot \rangle$. If each $\phi_k(x)$ is a monic (the leading coefficient is 1) polynomial of degree k, show that $\phi_{k+1}(x) x\phi_k(x) = -\alpha_k\phi_k(x) \beta_k\phi_{k-1}(x)$, where $\alpha_k = \frac{\langle x\phi_k(x),\phi_k(x)\rangle}{\langle \phi_k(x),\phi_k(x)\rangle}$ and $\beta_k = \frac{\langle \phi_k(x),\phi_k(x)\rangle}{\langle \phi_{k-1}(x),\phi_{k-1}(x)\rangle}$ for $k = 1, 2, \ldots, n-1$. (8%)
- 7. Let $\{1, x, x^2 \frac{1}{3}, x^3 \frac{3}{5}x, \phi_4(x)\}$ be an orthogonal basis for P_4 with respect to the inner product $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x) dx$. Find $\phi_4(x)$. (7%)
- 8. Consider the vector space P_2 of polynomials of degree at most 2, and let $T: P_2 \to P_2$ be the linear transformation such that $T(x^2 1) = -x^2 + 1$, $T(x) = x^2 x 1$ and $T(1) = x^2 3x + 1$.
 - (a) Find a matrix representation for T associated with the ordered basis $\{x^2 1, x, 1\}$. (5%)
 - (b) Find p(x) such that T(p(x)) = x + 2. (5%)
 - (c) Find eigenvalues λ and the associated eigenfunctions p(x) for T. (i.e. $T(p(x)) = \lambda p(x)$) (5%)
 - (d) Find $T^8(x^2 2x + 1)$ (5%)
- Determine whether the statement is true or false. If it is true, prove it, otherwise, give a counter example. (15%)
 - (a) If S is a subspace of an inner product space V, then $(S^{\perp})^{\perp} = S$.
 - (b) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Let the set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ be linearly independent in \mathbb{R}^n , then the set $\{T(\vec{x}_1), T(\vec{x}_2), \dots, T(\vec{x}_k)\}$ is also linearly independent.
 - (c) Let \vec{v} be a unit column vector in \mathbb{R}^n . The characteristic polynomial $(\det(xI-A))$ of the matrix $A = \vec{v}\vec{v}^T$ is $x^{n-1}(x-1)$.

系所別:數學系統計科學

第1節

第1頁,共2頁

科目:基礎數學

(10%) 1. Let $f:(0,+\infty)\to R$ be differentiable and $\lim_{x\to+\infty}f'(x)=5$.

Find
$$\lim_{x\to+\infty} (f(x+5)-f(x))$$
.

(20%) 2. Evaluate the following limit:

(5%) (a)
$$\lim_{x\to 0} \frac{e^x - 1 - x - \frac{x^2}{2}}{x^3}$$
.

(5%) (b)
$$\lim_{x\to 1^-} \frac{\frac{\pi}{2} - \sin^{-1}(x)}{x-1}$$
.

(5%) (c)
$$\lim_{x\to 0^+} x^{\frac{1}{2+\ln(x)}}$$
.

(5%) (d)
$$\lim_{x\to\infty} x^2 (1-x\sin(\frac{1}{x}))$$
.

(20%) 3. Evaluate the following integral:

(5%) (a)
$$\int_{2}^{4} \frac{1+x}{1-x} dx$$
.

(5%) (b)
$$\int_{\pi/4}^{\pi/2} \frac{\cos^3(x)}{\sqrt{\sin(x)}} dx.$$

(5%) (c)
$$\int_{1}^{e} \ln^{2}(x) dx$$
.

$$(5\%) (d) \int_0^2 \frac{1}{1+e^x} dx.$$

(10%) 4. Let
$$\Gamma(\alpha) = \int_0^{+\infty} e^{-x} x^{\alpha - 1} dx$$
, $\alpha \in (0, +\infty)$. Prove (5%) (a) $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, $\forall \alpha > 0$. (5%) (b) $\Gamma(n) = (n - 1)!$, $\forall n \in \mathbb{N}$.

系所別:數學系統計科學

第1節

第二頁,共2頁

科目:基礎數學

(20%) 5. Let
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$
.

(5%) (a) Find A^{-1} .

(15%) (b) Find the eigenvalues of A and a non-singular matrix, P, such

that
$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$
.

(10%) 6. Show that if $A^2 = A$, and if λ is an eigenvalue of A, then either $\lambda = 1$ or $\lambda = 0$.

(10%) 7. Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
. Find a symmetric matrix, B , such that $x^T A x = x^T B x$, $\forall x \in \mathbb{R}^2$.

第2節

第/頁,共3頁

1. (35%) Let X_1, \ldots, X_n be iid with pdf

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1} & \text{if } 0 \le x \le 1, 0 < \theta < \infty, \\ 0 & \text{elsewhere} \end{cases}$$

- (i) (7%) Find the maximum likelihood estimator (MLE) of θ . Is the MLE of θ unbiased? Show the details.
- (ii) (4%) Find the Rao-Cramer's lower bound of MLE of θ .
- (iii) (3%) Let W be Beta(1,1), and consider $Y = -\theta \log W$, where $\theta > 0$. Find the cdf of Y.
- (iv) (6%) Suppose the random sample Y_1, \ldots, Y_n from the distribution of Y. Find the MLE and the minimum variance unbiased estimator (MVUE) of $P(Y \leq 2)$).
- (v) (5%) Suppose the random sample Y_1, \ldots, Y_n from the distribution of Y. Find a uniformly most powerful critical region of size $\alpha = 0.05$ and n = 2 for testing $H_0: \theta = 2$ against $H_a: \theta > 2$. Show the details. $(\chi^2_{(2)} = 5.991, \chi^2_{(3)} = 7.815, \chi^2_{(4)} = 9.488, \chi^2_{(5)} = 11.071, \chi^2_{(6)} = 12.592)$
- (vi) (4%) Let the random sample W_1, \ldots, W_n from Beta(1,1) and let $W_{(1)}, \ldots, W_{(n)}$ denote the order statistics. Find the distribution of the j^{th} order statistic $W_{(j)}$. Show the details.
- (vii) (6%) Let the random sample W_1, \ldots, W_n from Beta(1,1) and let $W_{(1)}, \ldots, W_{(n)}$ denote the order statistics. The range is defined as $R = W_{(n)} W_{(1)}$ and the mid-range is defined as $V = (W_{(1)} + W_{(n)})/2$. Find the distribution of R.

系所別:數學系統計科學 科目:機率與統計

第 2 節

第2頁,共分頁

2. (8%) Consider X and Y have a trinomial distribution with joint pmf

$$p(x,y) = \frac{n!}{x!y!(n-x-y)!} p_1^x p_2^y p_3^{n-x-y},$$

where x and y are nonnegative integers with $x + y \le n$;

 $p_1, p_2, p_3 \in (0,1)$ and $p_1 + p_2 + p_3 = 1$; and let p(x,y) = 0 elsewhere.

- (i) (4%) Find the moment generating function of a trinomial distribution.
- (ii) (4%) Compute E(Y|X=x).
- 3. (13%) Let $X \sim N(0, \theta)$ where $0 < \theta < \infty$.
 - (i) (3%) Show that the family $N(0, \theta)$ where $0 < \theta < \infty$ is not complete by finding at least one nonzero function u(x) such that E(u(X))=0, for all $\theta > 0$.
 - (ii) (6%) If X_1, X_2, \dots, X_n be a random sample from $N(0, \theta)$, show that the MLE of θ is an efficient estimate of θ .
 - (iii) (4%) Find the minimum variance unbiased estimator of θ^2 .
- 4. (20%) For the simple linear regression model, $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where i = 1, ..., n and ϵ_i are i.i.d $N(0, \sigma^2)$.
 - (i) (4%) To derive the least squared estimator(s) (LSE) for β_0 and β_1 .
 - (ii) (5%) Find the sampling distribution of $\hat{\beta}_1$. Show the details.
 - (iii) (5%) For testing $H_0: \beta_1 = 0$. Find the distribution of $SSReg/\sigma^2$ under H_0 is true, where SSReg is the sum of squares regression.
 - (iv) (6%) Derive the likelihood ratio test for testing $H_0: \beta_1 = 0$ against $H_a: \beta_1 \neq 0$.

系所別:數學系統計科學 科目:機率與統計

第 2 節

第3頁,共3頁

- 5. (24%) Let X_1, \ldots, X_n be a random sample from a distribution, where $Pr(X_i = 1) = \theta$, $Pr(X_i = 0) = 1 \theta$, where $0 < \theta < 1$.
 - (i) (5%) Show that this is a uniformly most powerful test when we test $H_0: \theta = \frac{1}{2}$ against $H_a: \theta < \frac{1}{2}$.
 - (ii) (5%) Based on (i). Use the Central Limit Theorem (CLT) to find n and c so that the significance level is approximately 0.10 and the power of the test is approximately 0.80 when $\theta = \frac{1}{3}$.
 - (iii) (6%) If the prior p.d.f of Θ is

$$f(\theta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, & 0 < \theta < 1 \\ 0, & \text{otherwise.} \end{cases}$$

Let $Y = \sum_{i=1}^{n} X_i$, find the posterior p.d.f , $f(\theta|Y)$.

- (iv) (3%) Take the loss function to be $\mathcal{L}[\theta, \delta(y)] = [\theta \delta(y)]^2$; find the Bayes' solution $\delta(y)$ for a point estimate of θ .
- (v) (5%) Find E(Y) and Var(Y).