國立中正大學103學年度碩士班招生考試試題

系所別:企業管理學系-乙組

第 2 節

第/頁,共2頁

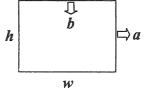
科目:微積分

考生作答須知:

- 一、本試卷共有兩部分,各佔50分。每題配分標示於題後,總分100分。
- 二、答案請於答案卷上依題號次序作答,題號務必標示清楚,並寫出計算過程,否則不予計分。

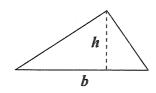
第一部分: 微分 (50%)

1. (10%) Find the following limits:


(1) (5%)
$$\lim_{x \to 0} \frac{\sqrt{1+3x} - \sqrt[3]{1+5x}}{x}$$
 (2) (5%)
$$\lim_{x \to 0} \frac{1-\cos x}{x^{10}}$$

- 2. (10%) Find the sum of $S = \sum_{k=0}^{\infty} (-1)^k \left(\frac{2k+1}{2^k} \right)$.
- 3. (10%) Find the derivatives of the following.
 - (1) (5%) Let $y = \frac{(1-x)^2}{(1+x)^4}$, in which $x \neq -1$. Find the derivative of $\frac{dy}{dx}$.
 - (2) (5%) Let $w = x^2 + y^2$, in which y = y(x) is the function defined by

$$x^2 - xy + y^2 - 1 = 0$$
. Find the derivative of $\frac{dw}{dx}$.


- 4. (10%) Given a rectangle with width w meters and height h meters.

 Assume the width is *increasing* by a meters per second and the height is *decreasing* b meters per second.
 - (1) (5%) What is the rate of change of the diagonal length?
 - (2) (5%) What is the rate of change of the rectangle area?

5. (10%) Given a triangle with base b and height h.

What is the maximum area of the rectangle that can be put inside the given triangle?

國立中正大學103學年度碩士班招生考試試題

系所別:企業管理學系-乙組

第2節

第2頁,共2頁

科目:微積分

考生作答須知

- 一、本試卷共有兩部分,各佔50分。每題配分標示於題後,總分100分。
- 二、答案請於答案卷上依題號次序作答,題號務必標示清楚,並寫出計算過程,否則不予計分。

第二部分:積分(50%)

- 1. Evaluate each integral of the following: (24%)
 - (a) $\int \frac{x^2}{(x-a)(x-b)(x-c)} dx.$
 - (b) $\int_0^2 \max\{3x, 4-x^2\} dx$.
 - (c) $\int_{-\infty}^{\infty} e^{(x-e^x)} dx$.
 - (d) $\int_0^\infty \frac{e^{-ax} e^{-bx}}{x} dx$, where a > 0 and b > 0.
- 2. Determine the arc length of the graph of $f(x) = \int_0^x \sqrt{t^2 + 2t} dt$ for $2 \le x \le 4$. (8%)
- 3. Determine the volume of the solid obtained by revolving the region bounded by the curve $x^2 + (y-b)^2 \le a^2$, where 0 < a < b, about the x-axis. (10%)
- 4. Use Simpson's Rule (also called the Parabolic Rule) with n=8 subintervals to estimate $\int_{1/2}^{2} \frac{\sin x}{x} dx$ to two decimal places. (8%)