國立中正大學 103 學年度碩士班招生考試試題系所別: 化學工程學系 科目: 化工熱力學與化工動力學

第3節

第/頁,共2頁

- 1. Propose an example to rationalize pseudo-steady state hypothesis and its limitation.
- The hydrolysis of ethylnitrobenzene (A) by hydroxyl ions at 15 °C can be represented by A + B → C + D, where B is hydroxyl ion.
 In one experiment using a batch reactor, the initial concentration for both reactants is 0.05 mol/L, please use the data listed as follows to estimate the reaction order and rate constant for the reaction. 15%

Reaction time, sec	120	180	240	330	530	600
% hydrolysis	32.95	41.75	48.8	58.05	69.0	70.4

- Propose suitable method to examine the existence of external and internal mass transfer limitation and to determine adsorption capability of a solid metal catalyst.
- 4. A first order reaction is carried out to a given conversion in isothermal stirred tank reactors. You have available N such reactors, all of equal volume V. In order to process the maximum amount of feed F_A(kmol/s), determine the optimal arrangement of m-parallel processing lines, each with n-reactors (i.e., nm=N)

國立中正大學 103 學年度碩士班招生考試試題系所別: 化學工程學系 科目: 化工熱力學與化工動力學

第 3 節

第2頁,共2頁

- 5. Initially, 1 mole of an unknown gas was kept at 1 bar and 80°C. The gas was found to behave ideally and the value of $C_p/C_v = 1.37$. The gas is allowed to expand reversibly and adiabatically to 0.1 bar. Now answer the following questions:
 - a. What are the initial and final volumes of the gas (6%)?
 - b. What is the final temperature of the gas (3%)?
 - c. Calculate ΔU and ΔH , respectively, for the process (6%)?

 $(R = 0.083145 \text{ bar } dm^3 K^{-l} mol^{-l} = 8.3145 J K^{-l} mol^{-l})$

6. For the equilibrium $NH_4Cl(s) \longrightarrow HCl(g) + NH_3(g)$ Estimates the temperature at which the dissociation of solid ammonium chloride reaches 1 atm, by using the following values at 25 °C (10%)

	$\Delta H^{o}_{f}(\mathrm{kJ/mol})$	$\Delta G^{o}_{f}(\mathrm{kJ/mo})$	
NH ₄ Cl(s)	-315.4	-203.9	
HCl (g)	-92.3	-95.3	
$NH_3(g)$	-46.2	-16.6	

7. The molar heat of vaporization of a liquid solvent at its normal boiling point is approximated by the Trouton's law:

 $\Delta H^{\text{wap}}/T_B = 88 \text{ J K}^{-1} \text{mo}\Gamma^{-1}$ where T_B is the normal boiling temperature of the liquid. Now we have a solvent with $T_B = 313 \text{ K}$ and with the molecular weight of 72g/mol. Now

- a. Assuming that the heat of vaporization is temperature independent, estimate the vapor pressure of the solvent at T = 293 K. (6%)
- b. The solvent is vaporized into air at 293 K and at a total of 1 atm. Estimate the weight of the solvent vaporized per unit volume (g/m^3) . Assume that the vaporized solvent is a ideal gas.(7%)
- 8. The values of H and S for steam at $400\,^{\circ}$ C are listed below. Use these data to calculate the fugacity of 10% steam at $400\,^{\circ}$ C and 15 MPa. (12%)

State 1 (Low pressure)	State 2		
$T_1 = 400 {}^{\circ}\text{C}$	$T_2 = 400 {}^{\circ}\text{C}$		
$P_1 = 0.01 \text{ MPa}$	$P_2 = 15 \text{ MPa}$		
$H_1 = 3279.9 \text{ kJ/kg}$	$H_2 = 2975.9 \text{ kJ/kg}$		
$S_1 = 9.609 \text{ kJ/kg.K}$	$S_1 = 9.609 \text{ kJ/kg.K}$		