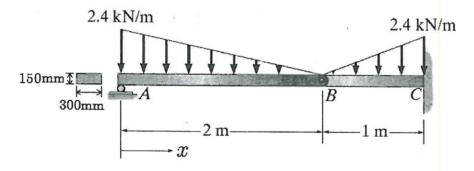
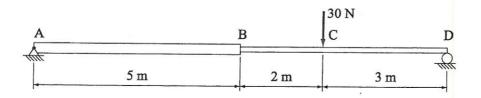

國立中正大學 103 學年度碩士班招生考試試題系所別:機械工程學系-甲組 科目:材料力學

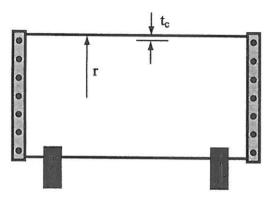

第3節

第 /頁,共≥頁

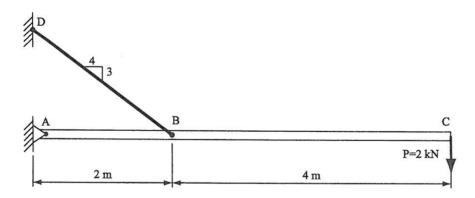

1. The three suspender bars are made of A-36 steel and have equal cross-sectional areas of 450mm². Determine the average normal stress in each bar if the rigid beam is subjected to the loading shown. (20%)

- A beam having rectangular cross section is subjected to distributed load 2.4kN/m on AB and BC. The cross section of the beam has a height of 15mm and a width of 30mm.
- (a) Determine the applied force and moment on the A, B, and C.(6%)
- (b) Determine the shear force throughout the beam as function of x and draw the shear force diagram for the beam. (6%)
- (c) Determine the position occurred the maximum bending stress, and determine the maximum bending stress. (8%)

3. A simply supported beam 10 m long is loaded with a 30-N downward force at point C. The moment of inertia of the cross section of the beam is 31₁ for segment AB and I₁ for segment BD. The Young's modulus of the beam is E. Determine the deflection at C and the angle at A by the integration method. (20%)



國立中正大學 103 學年度碩士班招生考試試題系所別:機械工程學系-甲組 科目:材料力學


第3節

第2頁,共≥頁

- A thin-walled cylindrical pressure vessel with a radius r of 1 m and a thickness t_c of 5 mm is subjected to an inner pressure p.
- (a) Consider the state of stress in the wall to construct three Mohr's circles. (6%)
- (b) Determine the maximum pressure p_{max} based on the maximum-shear and distortion-energy theories. The yield strength of the material is 200 MPa. (8%)
- (c) Determine the final thickness of the vessel based on the smaller p_{max} in (b). The Young's modulus is 200 GPa and the Poisson's ratio is 0.3. (6%)

5. An aluminum beam is supported by a pin at one end and an inclined aluminum bar at a third point. The beam is subjected to a downward force of 2 kN at point C. The cross sectional area of the beam is 4000 mm², and that of the bar is 400 mm². The moment of inertia for the beam around the horizontal axis is 50*10⁶ mm⁴. Determine the deflection at point C by the **virtual work** method. Neglect deflection caused by shear. Let *E* =70 GPa. (20%)

