電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

通訊工程學系-網路通訊甲組

第1節

第1頁,共4頁

科目:通訊原理

- 一、單選題(共30分): 每題有五個選項,選擇一個<u>最適當</u>的答案,每題答對得5分;未作答、答錯或答多於一個選項者,該題以0分計算。
- 1. Let $m_1(t)$ and $m_2(t)$ be two different real-valued message signals with bandwidth W Hz. Which of the following statements is false?
 - (a) The signal $A_c m_1(t) \cos(2\pi f_c t)$ has bandwidth 2W.
 - (b) The Hilbert transform of $A_c m_1(t) \cos(2\pi f_c t)$ has bandwidth 2W.
 - (c) The signal $A_c m_1(t) \cos(2\pi f_c t) + A_c m_2(t) \sin(2\pi f_c t)$ has bandwidth 2W.
 - (d) The signal $A_c m_1(t) \cos(2\pi f_c t) + A_c \hat{m}_1(t) \sin(2\pi f_c t)$ has bandwidth 2W, where $\hat{m}_1(t)$ denotes the Hilbert transform of $m_1(t)$.
 - (e) The signal $A_c m_1(t) \sin(2\pi f_c t)$ has bandwidth 2W
- 2. Let x(t) and y(t) be two aperiodic complex-valued energy-type signals with Fourier transform X(f) and Y(f), respectively. Let $()^*$ denote the complex conjugate operation. Which of the following statements is false?
 - (a) The Parseval's property states that $\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df.$
 - (b) The Fourier transform of $\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$ is X(f)Y(f).
 - (c) The Fourier transform of $x(t) + x^*(t)$ is a real-valued function of f.
 - (d) The Fourier transform of X(t) is x(-f).
 - (e) The Fourier transform of x(t) + x(-t) is an even function of f.
- 3. Two Gaussian random variables X and Y have a joint probability density function

$$f(x,y) = \frac{1}{2\pi\sigma^2 \sqrt{1-\rho^2}} \exp\left[-\frac{x^2 - 2\rho xy + y^2}{2\sigma^2 (1-\rho^2)}\right],$$

where $\sigma^2 > 0$ and ρ are two parameters. Which of the following statements

電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

通訊工程學系-網路通訊甲組

第1節

第 之頁,共44頁

科目:通訊原理

is false?

- (a) The mean of random variable X is 0.
- (b) The variance of random variable X is σ^2 .
- (c) The marginal probability density function of random variable Y is

$$f(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{y^2 - 2\rho y + \rho^2}{2\sigma^2}\right].$$

- (d) The correlation of two random variables $E\{XY\}$ is equal to $\rho\sigma^2$.
- (e) The random variables X and Y are correlated.
- 4. Let X_n be an independent identically Gaussian distributed random process (sequence) with mean μ and variance σ^2 . Which of the following statements is false?
 - (a) It is strictly sense stationary.
 - (b) It is wide-sense stationary.
 - (c) The process $Z_n = X_n X_{n-1}$ is white.
 - (d) At a particular time instant n, random variable X_n has density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right].$$

- (e) The power spectral density function of X_n is flat.
- 5. Let $\{\phi_1(t), \phi_2(t), \phi_3(t)\}$ be a set of orthonormal signals over the interval $[0, T_s]$.

Suppose we want to design a system to transmit a binary information over an additive white Gaussian noise channel. If the logic 0 is represented by

 $x(t) = \frac{1}{\sqrt{3}}\phi_1(t) - \frac{1}{\sqrt{3}}\phi_2(t) + \frac{1}{\sqrt{3}}\phi_3(t), \text{ which of the following signals is the best}$

candidate for logic 1?

(a)
$$-\frac{1}{\sqrt{3}}\phi_1(t) + \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$$
.

(b)
$$\frac{-1}{\sqrt{3}}\phi_1(t) - \frac{1}{\sqrt{3}}\phi_2(t) + \frac{1}{\sqrt{3}}\phi_3(t)$$

(c)
$$\frac{-1}{\sqrt{3}}\phi_1(t) - \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$$

電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

通訊工程學系-網路通訊甲組

第1節

第3頁,共4頁

科目: 通訊原理

(d)
$$\frac{1}{\sqrt{3}}\phi_1(t) + \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$$

(e)
$$\frac{1}{\sqrt{3}}\phi_1(t) - \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$$

6. Consider a set of binary codewords $\mathbf{c}_1 = [1, 1, 1, 1], \ \mathbf{c}_2 = [1, -1, 1, -1]$

$$\mathbf{c}_3 = [1, -1, -1, -1], \quad \mathbf{c}_4 = [1, -1, -1, 1], \text{ and } \quad \mathbf{c}_5 = [1, 1, -1, -1].$$
 Assume that the

received signal is $\mathbf{r} = \alpha \mathbf{c}_m + \mathbf{w}$, where $\alpha = 0.5$ is the known channel gain and

w is the additive white Gaussian noise whose entries are of zero mean and variance σ^2 . Suppose that $\mathbf{r} = [0.2, 0.3, -0.1, -0.2]$ is received, the maximum likelihood detector determines the received codeword to be

- (a) \mathbf{c}_1
- (b) \mathbf{c}_2
- (c) c_3
- (d) \mathbf{c}_4
- (e) \mathbf{c}_5

二、計算題(共 40 分):

- 1. (10 %) A real-valued random process Y(t) = X(t) + X(t-T), where X(t) is a wide-sense stationary process with power spectral density $S_X(f)$. Express the power spectral density of Y(t) in terms of $S_X(f)$.
- 2. (10 %) Suppose signal x(t) is periodic with period T. Then x(t) can be represented by its Fourier series representation $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T}$. Let the

Fourier series representation of $y(t) = \hat{x}(t) = \sum_{k=-\infty}^{\infty} Y_k e^{j2\pi kt/T}$, where $\hat{x}(t)$ is the

Hilbert transform of x(t). Express the Fourier series coefficients Y_k in terms of

電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

通訊工程學系-網路通訊甲組

第1節

第4頁,共4頁

科目: 通訊原理

the coefficients X_k .

- 3. (10 $\frac{1}{2}$) Let $x(t) = \sum_{k=-\infty}^{\infty} p(t nT)$ be a periodic signal with period T and $p(t) = \begin{cases} 1, & -\frac{T}{4} < t < \frac{T}{4} \\ 0, & \text{otherwise.} \end{cases}$
 - a). Determine the continuous-time Fourier transform X(f) of x(t).
 - b). Plot X(f) versus frequency f
- 4. (10 分) Consider the case of binary PAM signals over the AWGN channel in which the two possible signal points are $s_1 = -s_2 = \sqrt{E_b}$, where E_b is the energy per bit. The prior probabilities are $P(s_1) = p$ and $P(s_2) = 1 p$. The receive signal (one dimension) can be written as $r = \pm \sqrt{E_b} + w$, where w is the AWGN distributed according to $\mathcal{H}(0, \sigma_n^2)$.
 - a). Determine the metrics for the maximum likelihood (ML) detector when the transmitted signal is corrupted by AWGN.
 - b). Derive the probability of error for detecting binary PAM signals by the ML detector.
- 三、名詞解釋(共30分):請以下列兩名詞為標題,利用數學符號、數學式、圖、表格或其他專業術語寫兩篇短文(每篇至多500字),從該名詞的定義用途、特性等,分別解釋下列的名詞。
- 1. (15 分) Frequency Division Multiplexing
- 2. (15 分) Quadrature Amplitude Modulated (QAM) Signals