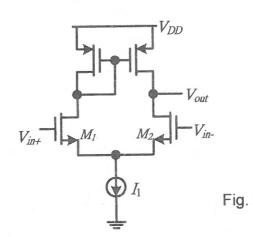
國立中正大學103學年度碩士班招生考試試題

電磁晶片組


系所別:電機工程學系-計算機工程組

晶片系統組

第2節

第1頁,共乙頁

- 1. In each of the following statements, determine whether the statement is True or False. Describe your reasons to support your choices.
 - (a)As the biasing current increases, the MOS transconductance increases linearly with respect to biasing current. (5%)
 - (b)The dominant current in MOS devices is drift current. (5%)
 - (c)When the substrate reverse bias of an NMOS device is increased, the threshold voltage will decrease. (5%)
- 2. Find the voltage gain of the differential amplifier circuit of Fig. P2 under the condition that I_1 = 60 μ A, V_t = 1V, W_1 = W_2 = 3.5 μ m, L_1 = L_2 = 0.35 μ m, $C_{ox}\mu_n$ = 150 μ A/V², $C_{ox}\mu_p$ = 75 μ A/V², V_A (Both NMOS and PMOS) = 20V. (10%)

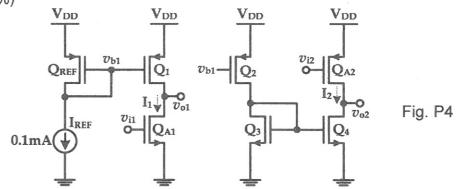
3. Consider a feedback amplifier for which the open-loop transfer function A(s) is given by

$$A(s) = \left(\frac{10}{1 + s/10^5}\right)^3$$

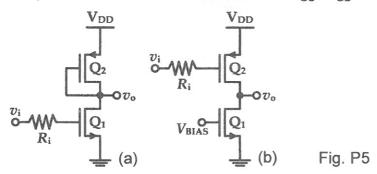
- (a)Draw the Bode plot. (10%)
- (b)Let the feedback factor β be a constant independent of frequency. Find the frequency ω_{180} at which the phase shift is 180°. (5%)
- (c)Show that the feedback amplifier will be stable if the feedback factor is less than a critical value β_{cr} and find the value of β_{cr} . (10%)

國立中正大學103學年度碩士班招生考試試題

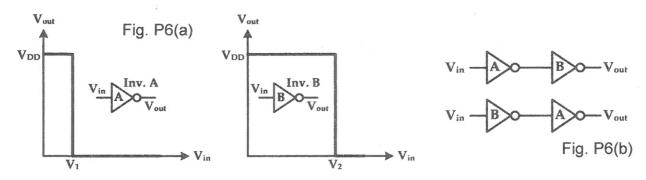
電磁晶片組


系所別:電機工程學系-計算機工程組

晶片系統組


第2節

第2頁,共2頁


- 4. The circuit of Fig. P4 is fabricated with the following process parameters: $C_{ox}\mu_n=100~\mu\text{A/V}^2$, $C_{ox}\mu_p=50~\mu\text{A/V}^2$, and $V_{tn}=|V_{tp}|=0.5\text{V}$. Assume that $5(W/L)_{QREF}=4(W/L)_{Q1}=3(W/L)_{Q2}=2(W/L)_{Q3}=1.5(W/L)_{Q4},~2(W/L)_{A1}=(W/L)_{A2}=20,~L=2~\mu\text{m}$ for Q_{A1} and Q_{A2} , λ =0 for Q_{REF} and Q_{A2} , V_{A} =10 V/ μ m for Q_{A1} , and V_{A} =5 V/ μ m for Q_{A2} .
 - (a) Calculate I₁ and I₂. (5%)
 - (b) In case both Q_{A1} and Q_{A2} are biased at saturation region, please find the voltage gains v_{o1}/v_{i1} and v_{o2}/v_{i2} . (10%)

- 5. (a) Please explain the miller theorem. (5%)
 - (b) Please determine the input and output poles of the circuits shown in Fig. P5. Assume that the parasitic capacitances of a MOS transistor are C_{GS} , C_{GD} , and C_{DB} . (10%)

- 6. (a) A CMOS inverter is designated using the following parameters: V_{DD} = 1.8 V, V_{tn} = 0.5 V, $|V_{tp}|$ = 0.5 V, $C_{ox}\mu_n$ = 300 μ A/V², $C_{ox}\mu_p$ = 75 μ A/V², $(W/L)_{PMOS}$ = 1.08 μ m/0.18 μ m, $(W/L)_{NMOS}$ = 0.27 μ m/0.18 μ m, and ignore the channel length modulation. Please calculate the noise margins. (10%)
 - (b) Assume that an equivalent capacitance C_L exists between the output node of the CMOS inverter and ground. In case the inverter is switched at a frequency of f Hz with a supply voltage of V_{DD} , please derive the dynamic power dissipation of the inverter. (5%)
 - (c) If two CMOS inverters are designated with the characteristics shown in Fig. 6P(a), please sketch the overall voltage-transfer characteristic (VTC) for the circuit configurations shown in Fig. 6P(b). (5%)

