## 國立中正大學103學年度碩士班招生考試試題

電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

科目:線性代數與機率

通訊工程學系-網路通訊甲組

第2節

第 頁,共2頁

## Linear Algebra

1. EFG = H given that

$$E = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, G = \begin{bmatrix} 1 & -2 & 1 \\ 4 & 3 & -2 \end{bmatrix}, H = \begin{bmatrix} 8 & 6 & -4 \\ 6 & -1 & 0 \\ -6 & 1 & 0 \end{bmatrix}.$$

- a. (10 %) Find a matrix F to satisfy this equation.
- b. (10 %) Find the eigenvalues and eigenvectors of F.
- c. (10 %) Find a matrix P that diagonalizes F.
- d. (5 %) Compute  $F^{100}$ .

2. 
$$\begin{cases} x - 3y + z = 0 \\ 2x - 6y + 2z = 0 \\ 3x - 9y + 3z = 0 \end{cases}$$

- a. (10 %) Find a basis for the solution space of this homogeneous linear system.
  - b. (5 %) Find the dimension of the solution space.

## 國立中正大學103學年度碩士班招生考試試題

電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

科目:線性代數與機率

通訊工程學系-網路通訊甲組

第2節

第2頁,共2頁

## **Probability**

- 1. The probability that the market goes up on Monday is 0.6; given that it went up on Monday, the probability that it goes up on Tuesday is 0.3; and, finally, given that it went up on Monday and Tuesday, the probability that it goes up on Wednesday is 0.4. Find the following probabilities.
  - a. (5%) The market goes up on all three days.
  - b. (5%) The market goes up on Monday and Tuesday, but not on Wednesday.
- 2. Suppose X and Y are random variables such that

$$E\{X\} = 1$$
,  $Var\{X\} = 2$ ,  $E\{Y\} = 3$ ,  $Var\{Y\} = 4$ ,  $Cov\{X,Y\} = 1$ 

Compute the following quantities:

- a. (5%) E[X + 2Y].
- b. (5%) E[XY].
- c. (5%) Var[X 2Y + 1].
- 3. (5%) Consider the random variable X with the following probability density function (pdf):

$$f_X(x) = \begin{cases} p\lambda e^{-\lambda x} &, x \ge 0\\ (1-p)\lambda e^{\lambda x} &, x < 0 \end{cases}.$$

- , where  $\lambda$  and p are scalars with  $\lambda > 0$  and  $p \in [0, 1]$ . Find the mean of X.
- 4. The following table indicates the joint probability mass function (PMF) of random variables X and Y:

- a. (5%) Find the joint CDF  $F_{X,Y}(x,y)$  from the indicated joint PMF.
- b. (5%) Find the marginal CDF of X.
- c. (5%) Find the marginal PMF of Y.
- d. (5%) Find the conditional probability P[X Y = 3 | X = 2].