本試題卷共九大題，每題配分標明於題號後，合計 100 分
1．（ 15% ）
（a）Find the potential V in space for an electric dipole consisting of charges +q and －q with a small separation d．
（b）Find the electric field lines equation．
（c）Draw the equipotential and electric field lines of an electric dipole．

2．（15\％）As shown in Fig．1，an emf V is applied across a parallel－plate capacitor of area S ．The space between the conducting plates is filled with two different lossy dielectrics of thicknesses d_{1} and d_{2} ，permittivities ε_{1} and ε_{2} ，and conductivities σ_{1} and σ_{2} ，respectively．Determine
（a）the current density J between the plates；
（b）the electric field intensities E in both dielectrics；
（c）the surface charge densities ρ_{s} on the plates and ρ_{si} at the interface．

Fig． 1

3．（ 10% ）In what manner must the permittivity（ ε ）and electric field（E）vary in an inhomogeneous charge free space so that Laplace＇s equation continues to hold？

4．（10 \％）Write the differential form and integral form of Maxwell＇s equations．

5．（10\％）A sinusoidal voltage generator with $V_{g}=1 \angle 0^{\circ}$（V）and internal impedance $Z_{g}=R_{0}$ is connected to a lossless transmission line with a characteristic impedance
$\mathrm{R}_{0}=50 \Omega$ ．The line is l meters long and is terminated in a load resistance $\mathrm{R}_{\mathrm{L}}=25$
Ω ．Find
（a）the voltage V_{L} at the load and the current I_{L} flowing through the load；
（b）the average power delivered to the load．

6．（ 10% ）Find the magnetic flux density at a distant point of a small circular loop of radius b that carries current I．Hint：use the spherical coordinate system．

7．(10%) A lossless transmission line of electrical length $l=0.3 \lambda$ is terminated with a complex load impedance as shown in Fig．2．Find the reflection coefficient at the load，the VSWR on the line，and the input impedance to the line．

Fig． 2

8．（10\％）A parallel－plate waveguide made of two perfectly conducting infinite planes spaced $3(\mathrm{~cm})$ apart in air operates at a frequency $10(\mathrm{GHz})$ ．Find the maximum time－average power that can be propagated per unit width of the guide without a voltage breakdown for the TEM mode．

9．（ 10% ）The space between a parallel－plate capacitor of area S is filled with a dielectric whose permittivity varies linearly from ε_{1} at $\mathrm{y}=0$ to ε_{2} at $\mathrm{y}=\mathrm{d}$ ． Neglecting the fringing effect，find the capacitance．

