國立中央大學103學年度碩士班考試入學試題卷

所別:<u>統計研究所碩士班 不分組(一般生)</u> 科目:<u>基礎數學</u> 共<u>入</u>頁 第<u></u>頁 統計研究所碩士班 不分組(在職生)

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

1. (20%) Consider a double integral $\iint_R f(x,y) dx dy$ over a region R, where R is a sector of a circle with radius 1 as shown in the following figure.

- (a) (5%) Write down the integral explicitly in Cartesian coordinates (by finding the range of x and y).
- (b) (5%) Write down the integral explicitly in polar coordinates.
- (c) (10%) Consider the change of variables: u = x y and v = x + y. Find its Jacobian and rewrite the integral explicitly with respect to the new variables.
- 2. (25%) Let $f(x,y) = x^2 + y^3 y$ be a smooth function on the region

$$R = \{x, y \in \Re^2 : -2 \le x \le y \le 2\}.$$

- (a) (3%) Describe the boundary of R.
- (b) (2%) Calculate the area of R.
- (c) (5%) Find the critical points of f over the interior of R.
- (d) (5%) Find the local minimum and local maximum of f over the interior of R.
- (e) (10%) Find the global minimum and global maximum of f over the interior and boundary of R.
- 3. (20%) Consider a sequence $a_0 = 1$, $a_1 = 1$ and $a_{n+2} = a_{n+1} + a_n$ for all n > 1. One can rewrite the recursive formula in terms of matrices as

$$\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = A \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix}$$

where A is a 2×2 matrix.

- (a) (5%) Find A and its eigenvalues.
- (b) (5%) Find a general form of a_n in terms of eigenvalues and eigenvectors of A and n.
- (c) (10%) Find the minimal n so that $a_n \ge 10^{20}$.

國立中央大學103學年度碩士班考試入學試題卷

所別: 統計研究所碩士班 不分組(一般生) 統計研究所碩士班 不分組(在職生)

本科考試可使用計算器,廠牌、功能不拘

科目:基礎數學 冥 細 **2**页

*請在試卷答案卷 (卡) 內作答

- 4. (35%) A linear transform P from a vector space V to itself is called a projection if $P^2 = P$. Suppose $V = \mathbb{R}^3$ and W is the subspace of V spanned by (1, -1, 0) and (1, 0, -1).
- (a) (5%) Find all possible eigenvalues of P.
- (b) (5%) Show that P is always diagonalizable.
- (c) (5%) Find an orthogonal basis v_1, v_2, v_3 of V so that v_1 and v_2 is a basis of W
- (d) (10%) Find the matrix of the projection P on V given by $P(a_1v_1 + a_2v_2 + a_3v_3) =$ $a_1v_1 + a_2v_2$.
- (e) (10%) Consider a system of linear equations $X\beta=y$, where

$$X = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}, \quad \text{and } y = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

This system of linear equations indeed has no solutions. Find β that minimizes the sum of squared errors, $SSE(\beta) = (X\beta - y)^t(X\beta - y)$. Here, the superscript t is matrix transpose. (Hint: Solve the equation $X\beta = Py$.)

2

