科目：數理統計
考試時間：100分鐘

系所：統計學研究所
本科原始成績：100 分

1．Two players，A and B，alternately and independently flip a coin and the first player to obtain a head wins．Assume player A flips first．
（a）．If the coin is fair，what is the probability that A wins？（5\％）
（b）．Suppose that $\mathrm{F}(\mathrm{head})=p$ ，not necessarily $1 / 2$ ．What is the probability that A wins？（5\％）
（c）．Show that for all $p, 0<p<1, \mathrm{P}(\mathrm{A}$ wIns $)>\mathbf{1 / 2}$ ．（5\％）
2．Find $P(|Y-\mu| \leq 2 \sigma)$ for the exponential random variable．Compare with the corresponding probabilistic statements by Chebyshev＇s theorem and the empirical rule．（10\％）
3．A merchant stocks a certain perishable item．She knows that on any given day she will have a demand for either two，three，or four of these items with probabilities $0.1,0.4$ ，and 0.5 ， respectively．She buys the items for $\$ 1.00$ each and sells them for $\$ 1.20$ each．If any are left at the end of the day，they represent a total loss．How many items should the merchant stock in order to maximize her expected daily profit？（5\％）
4．A member of the Pareto family of distributions（often used in economics to model income distributions）has a distribution function given by

$$
F(y)= \begin{cases}0, & y<\beta \\ 1-\left(\frac{\beta}{y}\right)^{\alpha}, & y \geq \beta\end{cases}
$$

where $\alpha, \beta>0$ ．
（a）．Find the density function．（5\％）
（b）．For fixed values of β and α ，find a transformation $G(U)$ so that $G(U)$ has a distribution function of F when U has a uniform distribution on the interval（0，1）．（5\％）
（c）．Given that a random sample of size 5 from a uniform distribution on the interval $(0,1)$ yielded the values $0.0058,0.2048,0.7692,0.2475$ and 0.6078 ，use the transformation derived in（b）to give values associated with a random variable with a Pareto distribution with $\alpha=2, \beta=3$ ．（5\％）
5．One observation is taken on a discrete random variable X with pmf $f(x \mid \theta)$ ，where $\theta \in\{1,2,3\}$ ．Find the MLE of $\theta .(10 \%)$

x	$f(x \mid 1)$	$f(x \mid 2)$	$f(x \mid 3)$
0	$1 / 3$	$1 / 4$	0
1	$1 / 3$	$1 / 4$	0
2	0	$1 / 4$	$1 / 4$

科目：數理統計
考試時間：100分鐘

系所：統計學研究所
本科原始成績：100分

3	$1 / 6$	$1 / 4$	$1 / 2$
4	$1 / 6$	0	$1 / 4$

6．Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be independent，uniformly distributed random variables on the interval $[0, \theta]$ ．
（a）．Find the density function of $Y_{(k)}$ ，the k th－order statistic，where k is an integer between 1 and $n .(5 \%)$
（b）．Use the result from（a）to find $E\left(Y_{(k)}\right) \cdot(5 \%)$
（c）．Find $\operatorname{Var}\left(Y_{(k)}\right)$ ．（5\％）
（d）．Use the result from（c）to find $E\left(Y_{(k)}-Y_{(k-1)}\right)$ ，the mean difference between two successive order statistics．Interpret the result．（5\％）

7．Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ denote a random sample from the density function given by

$$
f(y \mid \theta)= \begin{cases}\left(\frac{1}{\theta}\right) r y^{r-1} e^{-y^{r} / \theta}, & \theta>0, y>0 \\ 0, & \text { elsewhere }\end{cases}
$$

where r is a known positive constant．
（a）．Find a sufficient statistic for θ ．（5\％）
（b）．Find the maximum－likelihood estimator of θ ．（5\％）
（c）．Is the estimator in part（b）an MVUE for θ ？（5\％）
8．Suppose that an engineer wishes to compare the number of complaints per week filed by union stewards for two different shifts at a manufacturing plant．One hundred independent observations on the number of complaints gave means $\bar{x}=20$ for shift 1 and $\bar{y}=22$ for shift 2．Assume that the number of complaints per week on the i th shift has a Poisson distribution with mean θ_{i} ，for $i=1,2$ ．Use the likelihood ratio method to test $H_{0}: \theta_{1}=\theta_{2}$ versus $H_{a}: \theta_{1} \neq \theta_{2}$ with $\alpha \approx 0.01$ ．（10\％）

