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1. (10 points) Find a and b such that the following function fis differentiable everywhere.
3
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2x“+b, x>3.

2. (10 points) Find the following integrals:
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X" =5x“+7x-3

3. (10 points) Find the extreme of /(x,y)=x%+2y? —3x+1 subject to the constraint x° + % <10,
Note: 10 =3.162 .

4. (10 points) Evaluate the following iterated integral by converting to polar coordinates, where a is

positive.
2a p2ax—x?
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5. (10 points) Evaluate the following line integral

j yzdx + xydy,
@

where the oriented clockwise curve C is the boundary of the region lying between the graph of
y=0,y= Jx and x=9,
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(a) (5pts) Compute det(A).

(b) (8pts) For each b, determine whether the system Ax = b; is consistent or not.

(c) (7pts) Find an orthonormal basis for the column space and null space of 4, respectively.
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7. Let P,(R) denote the vector space consist of all polynomials with coefficients from R having
degree less or equal to 2. Suppose that T is a linear operator on P, (R) defined by
T(f(x)) = f(1) + F'(0)x + (F'(0) + £(0))x2.
(a) (Spts) Let A be the matrix representation of T in the ordered basis {x?,x,1}. Compute A.
(b) (10pts) Show that A is diagonalizable.

(c) |(5pts)Find an orthogonal matrix Q such that Q™*AQ is a diagonal matrix.

8. (10pts) Suppose A is an m X n matrix with rank m and vy, vy, , v, € R" are vectors with

Span(v;, vy, , Vi) = R™ Prove that Span(dvy, Avy, -, 4vy) = R™.
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