國立臺北大學 103 學年度碩士班一般入學考試試題

系(所)組別: 統計學系 科 目: 基礎數學

第1頁 共1頁□□□ ☑不可使用計算機

- 1. Let $f(x) = \left(1 + \frac{1}{x}\right)^x$, x > 0.
 - (a) Find f'(x). (7%)
 - (b) Evaluate $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} (x) \cdot (8\%)$
- 2. Approximate the value of $\int_{1}^{2} \frac{1}{x} dx$ by Simpson's Rule for n = 4. (10%)
- 3. Find the area of the region bounded by y = x, y = 4x, xy = 1, and xy = 3. (10%)
- 4. Evaluate the following integrals.

(a)
$$\int_{0}^{\infty} x^3 e^{-x^2} dx$$
 (7%)

(b)
$$\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} dx dy$$
 (8%)

- 5. Please orthogonally diagonalize the matrix $A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$ (That is, find an orthogonal matrix P and a diagonal matrix D such that D=P^TAP). (12%)
- 6. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be distinct eigenvalues of a matrix A with associated eigenvectors $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$. Please show that $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ are linear independent. (12%)
- 7. Let A,B,C are $n \times n$ matrices and BA=CA. Show that if $det(A) \neq 0$, then B=C. (7%)
- 8. Please solve the linear system

$$\begin{cases} x +2y +3z +4w = 5\\ x +3y +5z +7w = 11 . (7\%)\\ x -z -2w = -7 \end{cases}$$

9. Let V be the vector space with basis $S = \{\cos\theta, \sin\theta\}$, and let $T = \{\sin\theta - \cos\theta, \sin\theta + \cos\theta\}$ be another basis for V. Find the matrix of the linear operator $L: V \to V$ defined by L(f) = f' with respect to (a) S (b) T (c) S and T. (12%)