國立臺北大學 103 學年度碩士班一般入學考試試題

系(所)組別:統計學系 科 目:數理統計

第1頁 共1頁□□□ ☑不可使用計算機

- 1. (25%) Let $X_1, X_2, ..., X_n$ be iid from a $N(0,\theta)$ distribution. We want to estimate the standard deviation $\sqrt{\theta}$.
 - (a) Find the density function of $|X_i|$.
 - (b) Find the constant c so that $\overline{Y}_n = c\Sigma |X_i|$ is unbiased. Is \overline{Y}_n an UMVUE?
 - (c) Find the values of a and b of the following

$$\sqrt{n}(\overline{Y_n}-a) \to N(0,b).$$

(d) Considering the following hypothesis testing

$$H_0: \theta = 1$$
 v.s. $H_1: \theta \neq 1$.

Use the likelihood ratio test to find the test statistic.

- (e) Determine the rejection area of the test statistic in (d) with a level α .
- 2. (25%) Let a random sample of size n be taken from a distribution of the discrete type with probability mass function $f(x;\theta) = \frac{1}{\alpha}, x = 1,2,...,\theta$, zero elsewhere, where θ is an unknown positive integer.
 - (a) Let $Y_n = \max\{X_1, X_2, ..., X_n\}$. Find the probability mass function of Y_n .
 - (b) Find an unbiased estimate for θ .
 - (c) Find the conditional distribution of $Y_1 = \min\{X_1, X_2, ..., X_n\}$ given Y_n .
- 3. (25%) Let X and Y are two random variables with CDF $F_X(t)$, $F_Y(t)$, respectively.
 - (a) Define the term "X is stochastically larger than Y" through CDF.
 - (b) Let X_{λ} -Poisson(λ). Is there any stochastical order between X_a and X_b , if a > b?
 - (c) Let X_B -Gamma(3, β). Is there any stochastical order between X_a and X_b , if a > b?
- 4.(25%) Let $X_1, X_2, ..., X_n$ be a random sample from a population with pdf or pmf $f(x|\theta)$. Given two distinct constants, θ_0 , θ_1 , we would like to test H_0 : $\theta = \theta_0$ vs. H_1 : $\theta = \theta_1$.
 - (a) Describe the Neyman-Pearson lemma.
 - (b) Let $f(x|\theta) \sim \text{binomial}(4, \theta)$. Use the random sample X_1, X_2 to find a most powerful test for H_0 : $\theta = 1/2$ vs. H_1 : $\theta = 1/4$ at significant level 11%.
 - (c) Let $f(x|\theta) \sim \text{Gamma}(2, \theta)$. Use the random sample of size n to find a most powerful test for H₀: $\theta = 1$ vs. H₁: $\theta = 2$ at significant level 5%.