國立高雄大學 102 學年度研究所碩士班招生考試試題

科目:機率論

系所:

考試時間:100分鐘

統計學研究所(統計組) 本科原始成績:100分 是否使用計算機:否

1. (10%) Let X and Y be independent uniform(0,1) random variables. Please compute the following probabilities: (a) $P(|X-Y| \le 0.5)$; (b) $P(Y \ge X \mid Y \ge 0.5)$.

- 2. (10%) Let X be a Poisson(λ) random variable. Use Chebyshev's inequality to derive the following inequalities: (a) $P(X \le \lambda/2) \le 4/\lambda$; (b) $P(X \ge 2\lambda) \le 1/\lambda$.
- 3. (10%) Let X be uniform(0,1) and Y be exponential(λ) random variables. If X and Y are independent, then what is the density function of Z = X + Y?
- 4. (15%) Let X and Y be independent gamma(α_1, λ) and gamma(α_2, λ) random variables, respectively. Is Y/X independent of X + Y? Please verify your answer.
- 5. (15%) Let X and Y be independent exponential(λ) random variables. Let $Z = \max(X, Y)$. Please compute E(Z) and Var(Z).
- 6. (10%) Let $M_X(t) = p^n(1 e^t(1 p))^{-n}$ be the moment generating function of a random variable X, where $0 and <math>t < -\ln(1 p)$. Please compute E(X) and Var(X) by using $M_X(t)$.
- 7. (15%) Let U and V be independent normal(0,1) random variables. Let $Z = \rho U + \sqrt{1-\rho^2} V$, where $|\rho| < 1$. Please compute (a) the joint density of $X = \mu_1 + \sigma_1 U$ and $Y = \mu_2 + \sigma_2 Z$, where σ_1 and $\sigma_2 > 0$, and (b) the conditional density of Y|X = x.
- 8. (15%) Let X_n be a gamma (n, λ) distribution with mean n/λ , where n is an integer and $\lambda > 0$. Please use central limit theorem to derive the limiting distribution of $(\lambda X_n n)/\sqrt{n}$ as $n \to \infty$.