國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學【海工系碩士班甲組】

※本科目依簡章規定「不可以」使用計算機

題號:459007

共1頁第1頁

1. [Ordinary Differential Equations] (15%)

A given curve y = f(x) passes through the point (1, 1). The intercept of y axis for all the tangent lines of the curve are equal to the x coordinates of the points of tangency. Find the equation of the curve.

2. [Laplace Transform] (10%)

Use **two** different methods to find the inverse transformation $\mathcal{L}^{-1}\left[\frac{1}{s^4-4s^2}\right]$

3. [Linear Algebra] (10%)

Find the values of k so that the vectors $\begin{bmatrix} 1 & -2 & 3 & 2 \end{bmatrix}$, $\begin{bmatrix} 2 & k+1 & 6 & 8 \end{bmatrix}$, and $\begin{bmatrix} -1 & 3 & 2k-1 & -1 \end{bmatrix}$ are linearly independent.

4. [Vector Calculus] (15%)

Given the motion on the curve $\mathbf{r}(t) = \cos t \mathbf{i} + 2\sin t \mathbf{j}$, find the points (coordinates) with maximum speed and acceleration. Also find the tangential acceleration \mathbf{a}_t , of the motion.

5. [Fourier Series] (15%)

Find the Fourier series for a given function f(x) with intervals specified:

$$f(x) = x, -\pi < x < \pi,$$

 $f(x+2k\pi) = f(x), -\infty < x < \infty$ and $k = \pm integer$.

6. [Residue Integration] (10%)

Evaluate the improper integral $\int_0^\infty \frac{dx}{1+x^4}$

with four simple poles at $z_1 = e^{\frac{\pi i}{4}}$, $z_2 = e^{\frac{3\pi i}{4}}$, $z_3 = e^{\frac{-3\pi i}{4}}$, $z_4 = e^{\frac{-\pi i}{4}}$ on a full circle.

7. [Partial Differential Equation] (25%)

- (a) What are the names of the three types of PDE and a typical field of application in each type? (5%)
- (b) Solve the following PDE using the Method of Separation of Variables: (20%)

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$
, for $0 \le x \le L$, $t > 0$;

for the motion of a string released from rest, subject to boundary conditions u(0,t) = 0, u(L,t) = 0, t > 0; and

initial conditions
$$u(x,0) = f(x)$$
, $\frac{\partial u(x,0)}{\partial t} = g(x) = 0$, $0 < x < L$.

