國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:計算機結構【電機系碩士班丙組、己組】

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)

題號:431009 共1頁第1頁

[Problem 1] Terminology Explanation (20%)

- (a) Superscalar Processor (b) Pipeline Processing (c) Real Time Processing
- (d) Delayed branch (e) Multi-core Processor

[Problem 2] (a) Describe the floating-point addition algorithm and hardware for IEEE 754 standard.(10%) (b)Design the adder architecture for adding two IEEE 754 floating-point numbers with the normalization form result. (10%)

[Problem 3] A set associative cache has a block size of four 32-bit words and a set size of 4. The cache can accommodate a total of 64K words. The main memory size that is cacheable is 256M * 32 bits. Design the cache structure and show how the processor's addresses are interpreted. (20%)

[Problem 4] Briefly describe what three techniques are possible for I/O operations. (10%)

[Problem 5] (a) Given the instruction architecture as follows. (20%)

Name	Format			Exa	mple			Comments
add	R	0	18	19	17	0	32	add \$s1, \$s2, \$s3
sub	R	0	18	19	17	0	32	sub \$s1, \$s2, \$s3
lw	I	35	18	17		100		lw \$s1, 100(\$s2)
sw	I	43	18	17		100		sw \$s1, 100(\$s2)
beq	. I	4	17	18		25		beq \$s1, \$s2, 100
bne	I	5	17	18		25		bne \$s1, \$s2, 100
slt	R	0	18	19	17	0	42	slt \$s1, \$s2, \$s3
j	J	2		-	2500			j 1000(see section 3.8)
jr	R	0	31	0	0	0	8	jr \$ra
jal	J	3			2500			jal 1000(see section 3.8)
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS instructions 32 bits
R-format	R	op	rs	rt	rd	shamt	funct	Arithmetic instructions format
I-format	I.	op	rs	rt	address			Transfer, branch format
Addi	I	8	rs	rt		imml	5	addi \$s1,\$s2,imm16

Transfer the C program block as follows to the machine code as you can.

for(i=0; i<10; i++) A[i]= A[i]+k;

(Assume: Start address of 32-bit integer array A --> 0x1000, Start address of 32-bit integer variable k --> 0x1100 and Start address of 32-bit integer variable i --> 0x1104)

(b) Suppose we have made the following measurements of average CPI for instructions:

Instruction	Average CPI
Arithmetic	1.0 clock cycles
Data transfer	1.4 clock cycles
Conditional branch	1.7 clock cycles
Jump	1.2 clock cycles

Compute the effective CPI for the machine code at(a). (10%)

