國立中山大學 102 學年度碩士暨碩士專班招生考試試題 科目名稱:半導體概論【電機系碩士班甲組】 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘) 題號:431008 共1頁第1頁 | Property | Si | GaAs | |---------------------------------|------|------| | Dielectric constant | 11.9 | 13 | | Energy gap, E _g (eV) | 1.12 | 1.43 | 1. A silicon sample is doped with 10¹⁶ donor atoms/cm³ at room temperature (300K). The intrinsic carrier density in Si is 9.65×10⁹ cm⁻³. - (a) Find the carrier concentrations. (10%) - (b) Find the Fermi level. (10%) (Note: Sketch the band diagram and mark E_C , E_V , E_F and E_i ; indicate clearly the location of the Fermi level with respect to intrinsic level.) 2. Consider a GaAs PIN diode - (a) Calculate the value of N_D with an intrinsic region thickness of 20 μm , and a permitted ΔE of 10^5 V/m. ΔE is the change in electric field across the depletion region. (10%) - (b) An electric field of 3.5×10⁵ V/m is needed to reach the saturation region. Find the bias voltage. (10%) - 3. Calculate the maximum width of surface depletion region for a metal-SiO₂-Si capacitor having $N_A = 3 \times 10^{16} \, \text{cm}^{-3}$. (20%) - 4. A solar cell under an illumination of 80 W/m² has a short circuit current I_{sc} of 40 mA and an open circuit output voltage V_{oc} of 0.55V. What are the short circuit current and open circuit voltages when the light intensity is halved? (20%) - 5. Consider the p⁺n junction of a uniformly doped silicon n-channel JFET has doping concentrations of $N_A = 10^{18}$ cm⁻³ and $N_D = 7 \times 10^{15}$ cm⁻³ at T = 300K. The metallurgical channel thickness is 0.8 μ m. Determine the built-in potential barrier and the pinchoff voltage of the JFET. (20%)