國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學甲【電機系碩士班甲組、丙組選考、丁組、戊組、己組】 題號:431002 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘) 共2頁第1頁

1. (7%) Find the Laurent series representation of a function

$$f(z) = \frac{5z + j2}{z^2 + jz}$$

with center at z = j in the domain 1 < |z - j| < 2, $j = \sqrt{-1}$.

2. (8%) Evaluate the following integral:

$$\int_C \frac{z^3 \mathrm{e}^{1/z}}{1+z^3} dz,$$

where C denotes a counterclockwise simple closed contour |z|=3 .

3. (15%) Compute the Fourier transform $F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$ of a signum function f(t) defined as

$$f(t) = \begin{cases} -1, & t < 0 \\ 0, & t = 0 \\ 1, & t > 0 \end{cases}$$

Each calculation step is required for obtaining the credit.

4. (15%) 下面的問題共有三個子題,**只要寫出每個子題的答案即可**(不需寫出計算過程),例如: (a) $\beta = 1$, $\gamma = 2$ 。

Let $\mathbf{a}_1 = \begin{bmatrix} 1 & 0 & 1 & \alpha \end{bmatrix}^T$, $\mathbf{a}_2 = \begin{bmatrix} 1 & \beta & 2 & 2 \end{bmatrix}^T$, and $\mathbf{a}_3 = \begin{bmatrix} -2 & 3 & \gamma & -4 \end{bmatrix}^T$ be three vectors in \mathbb{R}^4 , where α , β , and γ are three real parameters, and denote $A := \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \in \mathbb{R}^{4 \times 3}$.

- (a) (4%) Suppose α is not a positive integer. Find real β and γ such that $\{a_1, a_2, a_3\}$ is a linearly dependent set.
- (b) (5%) Now let $\alpha = 2$, $\beta = -1$, $\gamma = -5$, and let x be a nonzero vector in the null space N(A) of A. Find the value of k to satisfy $\|\mathbf{x}\|_1 + 2\|\mathbf{x}\|_{\infty} + k\|\mathbf{x}\|_2 = 0$.
- (c) (6%) Now let $\alpha = 2$, $\beta = -1$, $\gamma = -5$, and let d denote the distance between vector $\begin{bmatrix} 1 & 4 & 0 \end{bmatrix}^T$ and $R(A^T)$, the range space of A^T . Compute the value of d.
- 5. (10%) 下面的問題共有二個子題,**只要寫出每個子題的答案即可**(不需寫出計算過程),例如: (a) $\theta = 30^{\circ}$ 或 $\theta = \pi/6$ 。

Consider the inner product space C[0,1] with $\langle f,g\rangle:=\int_0^1 f(x)g(x)dx$ and the norm $||f||:=\sqrt{\langle f,f\rangle}$.

Denote $S := \text{span}\{1, x\}$ as a subspace of C[0, 1].

- (a) (4%) Compute the angle θ , taken value in $[0, \pi/2]$, between 1 and x.
- (b) (6%) Find a vector u(x) in C[0,1], so that $\{1,u(x)\}$ forms an orthonormal basis for S.

國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學甲【電機系碩士班甲組、丙組選考、丁組、戊組、己組】 題號:431002 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘) 共 2 頁第 2 頁

6. (20%) Consider the following system of differential equations:

$$\dot{x}_1(t) = a_{11}x_1(t) + a_{12}x_2(t)
\dot{x}_2(t) = a_{21}x_1(t) + a_{22}x_2(t) + u(t)$$

where a_{11} , a_{12} , a_{21} , a_{22} are constant coefficients.

- (a) (5%) Suppose $u \equiv 0$ and the equations are driven by non-zero initial conditions. Determine the conditions on the coefficients $a_{11}, a_{12}, a_{21}, a_{22}$ such that $\lim_{t \to \infty} x_1(t) = 0$ and $\lim_{t \to \infty} x_2(t) = 0$.
- (b) (10%) Let the initial conditions be equal to zero. For the values $a_{11}=-1$, $a_{12}=1$, $a_{21}=0$, $a_{22}=-1$, and

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

calculate the response $y(t) = 2x_1(t) - x_2(t)$. Determine at what time the peak value of y occurs.

- (c) (5%) For the values $a_{11} = 0$, $a_{12} = 1$, $a_{21} = -1$, $a_{22} = -2$, and $u(t) = \sin(t)$, calculate the steady-state response of $y(t) = x_1(t) x_2(t)$.
- 7. (15%) Consider the region R enclosed by the x-axis, x = 1 and $y = x^3$, as illustrated below

Fig. 1

- (a) (3% + 2%) Find the flux of $\overrightarrow{F} = (1 + y^2)\mathbf{j}$ out of R through the two sides C_1 (the horizontal segment) and C_2 (the vertical segment).
- (b) (10%) Find the flux of $\overrightarrow{F} = (1 + y^2)\mathbf{j}$ out of the third side C_3 .
- 8. (10%) Consider the following Lyapunov equation

$$XA + A^TX + Q = 0$$

where A is a (n-dimensional) real square matrix, and X, Q are real symmetric matrices.

- (a) (5%) Suppose all eigenvalues of A have negative real parts. Show that $X = \int_0^\infty e^{A^T \tau} Q e^{A\tau} d\tau$ is a solution to the Lyapunov equation.
- (b) (5%) Suppose Q is positive definite and the Lyapunov equation has a positive definite solution X. Show that all eigenvalues of A have negative real parts.