國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:高等微積分【應數系碩士班丙組】

※本科目依簡章規定「不可以」使用計算機

題號: 424003 共2頁第1頁

Question 1 (10 marks)

Evaluate the limit:

$$\lim_{n\to\infty}\frac{\pi+\sqrt{\pi}+\cdots+\sqrt[n]{\pi}}{n}.$$

[You need to give convincing reasons when evaluating this limit.]

Question 2 (10 marks)

Prove that the series

$$\sum_{n=1}^{\infty} \sin(n\pi + \frac{1}{\ln(n+1)})$$

is conditionally convergent.

Question 3 (15 marks)

Prove that the sequence of functions

$$f_n(x) = x^n (1 - \cos 2\pi x), \ n \ge 1$$

is uniformly convergent over the interval [0,1].

Ouestion 4 (15 marks)

Prove that the series

$$\sum_{n=1}^{\infty} xe^{-nx}$$

is uniformly convergent for $x \ge \delta$ for each fixed $\delta > 0$, but fails to be uniformly convergent for x > 0.

Ouestion 5 (12 marks)

Use the Implicit Function Theorem to prove that the equation

$$x^2 + y + \cos(x + \frac{3}{2}\pi e^y) = 0$$

uniquely defines y as a function of x near the point (0,0). Moreover, find the derivative $\frac{dy}{dx}$ at x = 0.

Ouestion 6 (14 marks)

Prove that the directional derivative of the function

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
 if $(x,y) \neq (0,0)$ and $f(0,0) = 0$

exists at (0,0) in every direction, but f is not continuous at (0,0).

國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:高等微積分【應數系碩士班丙組】

題號: 424003

※本科目依簡章規定「不可以」使用計算機

共2頁第2頁

Question 7 (12 marks)

Evaluate the surface integral

$$\iint\limits_{\Sigma} (xy + yz + zx) dS$$

where Σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ cut by the cylinder $x^2 + y^2 = 2x$.

Question 8 (12 marks)

Evaluate the triple integral

$$\iiint_{\Omega} xyzdxdydz$$

where Ω is the region enclosed by the unit sphere $x^2 + y^2 + z^2 = 1$ and the coordinate planes x = 0, y = 0, z = 0.

-END END-