國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:線性代數【應數系碩士班乙組、丙組】 ※本科目依簡章規定「不可以」使用計算機 題號: 424002

共1頁第1頁

Do all the following problems. Show details of your work.

1 Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
. Find determinant of A and A^{-1} if it exists. (10%)

- 2. (a) Define $T: \mathbf{R}^4 \to \mathbf{R}^3$ by T(s, t, x, y) = (s + x + y, s + t x y, 3s + t y). Find bases of the kernel of T and the image space of T. (15%)
 - (b) Define $T: \mathbf{R}^2 \to \mathbf{R}^2$ by T(x,y) = (x-2y,x+y). Find the matrix representation of T relative to the ordered basis $B = \{(1,1),(-1,2)\}$ of \mathbf{R}^2 . (10%)
- 3. Let A be an $n \times n$ matrix. Prove or disprove: If $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $\{A\mathbf{v}_1, \dots, A\mathbf{v}_n\}$ are independent sets, then A is invertible. (10%)
- 4. Let T be a linear transformation on \mathbb{R}^n such that $\operatorname{rank}(T^2) = \operatorname{rank}(T)$. Find $\operatorname{Ker}(T) \cap \operatorname{Im}(T)$. Justify your answer. (15%)
- 5. Let $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A. (5%)
 - (b) Find the minimal polynomial of A. (5%)
 - (c) Find a Jordan form for A. (5%)
 - (d) Find a matrix P such that $P^{-1}AP$ is the Jordan form in (c). (10%)
- 6. Let $\langle \mathbf{u}, \mathbf{v} \rangle = x_1 y_1 + 4x_1 y_2 + 4x_2 y_1 x_2 y_2$, where $\mathbf{u} = (x_1, x_2)^T$ and $\mathbf{v} = (y_1, y_2)^T$.
 - (a) Find a matrix A such that $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{u})^T \mathbf{v}$. (5%)
 - (b) Does $\langle \cdot, \cdot \rangle$ define an inner product on \mathbf{R}^2 ? Justify your answer. (10%)

End of Paper

