國立中山大學 102 學年度碩士暨碩士專班招生考試試題

科目名稱:機率論【應數系碩士班甲組】

※本科目依簡章規定「不可以」使用計算機

題號: 424007

共1頁第1頁

- (1) A random number N of dice is thrown. Let A_i be the event that N=i, and assume that $P(A_i)=2^{-i}, i \geq 1$. The sum of the score is S.
 - (a) Find the conditional probability that N=2 given S=4. (10pts)
 - (b) Find the conditional probability that S=4 given N is even. (10pts)
- (2) Let X_1, X_2, X_3 be independent random variables taking values in the positive integers and having mass functions given by $P(X_i = x) = (1 p_i)p_i^{x-1}$ for x = 1, 2, ..., and i = 1, 2, 3. Show that

$$P(X_1 < X_2 < X_3) = \frac{(1 - p_1)(1 - p_2)p_2p_3^2}{(1 - p_2p_3)(1 - p_1p_2p_3)}.(10pts)$$

- (3) Suppose X and Y are independent r.v.'s, with $X \sim \text{Gamma}(\alpha_1, \lambda)$, and $Y \sim \text{Gamma}(\alpha_2, \lambda)$. Find $E(X \mid Z)$, where Z = X + Y.(10pts)
- (4) Let X and Y be independent random variables each having the uniform distribution on [0,1]. Let $U = \min\{X,Y\}$ and $V = \max\{X,Y\}$.
 - (a) Find E(U). (10pts)
 - (b) Find cov(U, V). (10pts)
- (5) Let X, Y, Z be independent and exponential random variables with respective parameters λ, μ, ν . Find P(X < Y < Z).(10 pts)
- (6) Let X and Y have the bivariate normal density function

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} exp\{-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\}.$$

- (a) Show that X and $Z = (Y \rho X)/\sqrt{1 \rho^2}$ are independent N(0, 1) variables. (10pts)
- (b) Show that $P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi} \sin^{-1} \rho$. (10pts)
- (7) Let X have the binomial distribution with parameters n and p, and show that

$$E(\frac{1}{1+X}) = \frac{1 - (1-p)^{n+1}}{(n+1)p},$$

and find the limit of this expression as $n \to \infty$ and $p \to 0.(10 \mathrm{pts})$

