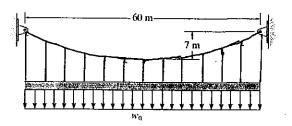
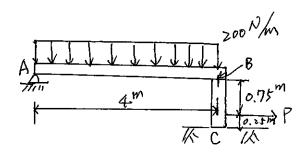
國立交通大學 102 學年度碩士班考試入學試題

科目: 工程力學(3052)

考試日期:102年2月4日 第2節


系所班別:土木工程學系

組別:土木系甲組一般生


第 / 頁,共 之頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

1. Determine the maximum cable force, if the uniform distributed loading $w_0 = 70 \, kN/m$. (25%)

2. Beam AB is subjected to a uniform load of 200N/m and is supported at B by post BC. If the coefficients of static friction at B and C are $\mu_B = 0.2$ and $\mu_C = 0.5$, determine the force P needed to pull the post out from under the beam. Neglect the weight of the members and the thickness of the beam. (25%)

國立交通大學 102 學年度碩士班考試入學試題

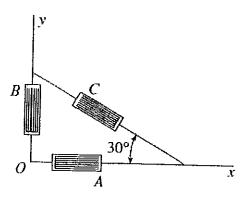
科目:工程力學(3052)

考試日期:102年2月4日 第 2節

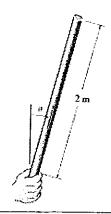
系所班別:土木工程學系

組別:土木系甲組一般生

第 2頁,共2 頁


【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

3. The transformation equations for plane strain are


$$\varepsilon_{x_1} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta,$$
$$\frac{\gamma_{x_1y_1}}{2} = -\frac{\varepsilon_x - \varepsilon_y}{2} \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta.$$

Here axes x_1y_1 are rotated through a counterclockwise angle θ from xy axes.

- A. Derive the above transformation equations from the deformations of an element in plane strain. (10%)
- B. On the surface of a structural component in a space vehicle made of pure aluminum (E = 70GPa, $\nu = 0.33$), the strains are monitored by means of three strain gages arranged as shown in the figure. The measured strains are $\varepsilon_A = 1200 \times 10^{-6}$, $\varepsilon_B = 200 \times 10^{-6}$, and $\varepsilon_C = 200 \times 10^{-6}$. Determine the principal strains and principal stresses in the material. (Show the principal strains and principal stresses on sketches of properly oriented elements.) (20%)

4. A bar having a circular cross section of 36mm diameter is 2m long and is held upward. If it has a mass of 6kg/m, determine the largest angle θ measured from the vertical, at which it can be supported before it is subjected to a tensile stress near the grip. (20%)

