國立清華大學 102 學年度碩士班考試入學試題

系所班組別:計量財務金融學系

考試科目 (代碼): 微積分(4504)

Calculus

1. (10 pts) Let

$$F(x) = \int_0^{\pi} |x - t| \cos t \ dt.$$

Find F'(x) for $0 < x < \pi$.

2. (10 pts) Find the area of the region

$$\Omega = \{(x,y) / 2x^2 + 2xy + 5y^2 \le 1\}.$$

Hint:
$$2x^2 + 2xy + 5y^2 = (x + 2y)^2 + (x - y)^2$$
.

3. (12 pts) Maximize the function

$$f\left(x,y,z\right) = 2^x 3^y 5^z$$

subject to the constraint $x^2 + y^2 + z^2 = 1$.

4. (12 pts) If $0 < x < \pi/2$, prove that

$$\frac{2}{\pi} < \frac{\sin x}{x} < 1$$

- 5. (16 pts) Let $f(x,y) = 4x^3 12x^2 + y^2 36x + 6$.
 - (a) Find the critical point(s) of f.
 - (b) Classify the nature of the critical point(s).
 - (c) Find the relative extremum of f, if it exists.
- 6. (20 pts) Let a_n be defined by

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n.$$

- (a) Show that $\{a_n\}$ is a decreasing sequence of positive numbers.
- (b) Does $\lim_{n\to\infty} a_n$ exist? Why?
- (c) Show that the alternating series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$ converges to $\log 2$.
- 7. (20 pts) Let y(t) be the size of a quantity at time t. Suppose that $y(t) \le Y$ for all $t \ge 0$, and that y(t) satisfies the differential equation

$$\begin{cases} dy/dt = ky(Y - \log y) \\ y(0) = y_0 \end{cases},$$

where Y, k and y_0 are positive constants.

- (a) Solve this differential equation.
- (b) Find the time t at which the growth rate y'(t) is increasing most rapidly.