題號: 382 國立臺灣大學 102 學年度碩士班招生考試試題

節次: 8 共 2 頁之第 / 頁

1. (10%) Solve the function A(t) if $A'(t) = \alpha A^2(t) + \beta A(t) - 1, \text{ and } A(0) = 0,$ where α and β are real numbers.

2. (10%) Given

$$y_m = \int \frac{dx}{(x^2+4)^m},$$

express y_m as $A + By_{m-1}$, where A and B are functions of x and m.

- 3. (10%) Find the Taylor series about x = 0 for the following integral: $\int x^2 e^{-x^2} dx.$
- 4. (20%) The Black-Scholes formula for a call option with six input parameters (S, X, r, q, σ, T) is as follows.

$$c(S,X,r,q,\sigma,T) = Se^{-qT}N(d_1) - Xe^{-rT}N(d_2),$$

where

$$d_1 = \frac{\ln(S/X) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}} \text{ and } d_2 = \frac{\ln(S/X) + (r - q - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \frac{\sigma\sqrt{T}}{\sigma\sqrt{T}}$$

and $N(\cdot)$ is the cumulative distribution function of the standard normal distribution defined as

$$N(d) = \int_{-\infty}^{d} n(x) dx = \int_{-\infty}^{d} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx,$$

where $n(\cdot)$ is the probability density function of the standard normal distribution.

- (a) (5%) Derive and express $\frac{\partial c}{\partial s}$ as the form of $e^A N(B)$. What are A and B?
- (b) (5%) Derive and express $\frac{\partial^2 c}{\partial s^2}$ as the form of $\frac{n(c)e^D}{E}$. What are C, D, and E?
- (c) (5%) Derive and express $\frac{\partial c}{\partial \sigma}$ as the form of $Fe^G n(H)$. What are F, G, and H?
- (d) (5%) Derive and express $\frac{\partial c}{\partial r}$ as the form of $Ie^{J}N(K)$. What are I, J, and K? (Please write down the detailed calculation process.)

見背面

題號: 382

國立臺灣大學 102 學年度碩士班招生考試試題

科目:微積分(C)

題號: 382

節次: 8

共 2 頁之第 2 頁

5. (10%) Represent $(1-x)^{-2}$ in a Maclaurin series for -1 < x < 1.

- 6. (10%) Find the equation of the line tangent to the curve $x = 2t^3 15t^2 + 24t + 7$, $y = t^2 + t + 1$ at t = 2.
- 7. (10%) Find the maximum and minimum values of $f(x,y) = xy^2$ subject to the condition $x^2 + y^2 = 1$.
- 8. (10%) Evaluate $\int (\tan^5 x)(\sec^4 x) dx$.
- 9. (10%) Determine the interval of convergence of $\sum_{n=1}^{+\infty} \frac{x^n}{2+n^2}$

試題隨卷繳回