考試科目徐發看另	所 別	財務管理所	考試時間	2月23日(元)第二節
----------	-----	-------	------	-------------

- 1. (20%) Integral can be valued using numerical methods of integration. In this question, please use different numerical methods to approximate the value of a definite integral. Evaluate the integral $\int_1^2 \frac{1}{x^2} dx$, by dividing the interval [1, 2] into 4 subintervals using
 - (a) (5%) Riemann sum;
 - (b) (5%) the Trapezoidal rule;
 - (c) (5%) the Simpson's rule;
 - (d) (5%) the exact value of the definite integral.

Round your answer to four decimal places.

- 2. (10%) Suppose that f is differentiable on (1,4), continuous on [1,4], and f(1)=2. Given that $2 \le f'(x) \le 3$ for all x in (1,4).
 - (a) (5%) What is the least value that f can take on at 4?
 - (b) (5%) What is the greatest value that f can take on at 4?
- 3. (20%) Find the following integrals.
 - (a) (10%) $\int_1^4 \frac{5^{\sqrt{x}}}{\sqrt{x}} dx$
 - (b) $(10\%) \int \frac{x-11}{x^2+3x-4} dx$
- 4. (20%) Please determine the convergence or divergence of the following series:
 - (a) (10%) $\sum_{k=1}^{\infty} ke^{-3k^2}$
 - (b) $(10\%) \sum_{n=1}^{\infty} \frac{n^2}{n!}$
- 5. (15%) Please solve the following differential equation.

$$x\frac{dy}{dx} + 2y = 1 - \frac{1}{x}, x > 0.$$

6. (15%) Please evaluate the integral $\int_0^1 \int_y^1 x^2 e^{xy} dx dy$.