考試科目系記計學內所別金高电系/金高电管理系面考試時間2月23日(六)第二節金高电管理系面

Instructions. (i), Two question sheets in total. (ii), Answer ALL questions.

1. For a random sample of size n from a population of size N, consider the following as an estimate of the sample mean μ :

$$\bar{X}_c = \sum_{i=1}^n c_i X_i$$

where the c_i are fixed numbers and X_1, \dots, X_n is an i.d.d. sample.

- (a) (5 points) Find a condition of the c_i such that the estimate is unbiased.
- (b) (10 points) Show that the choice of c_i that minimizes the variance of the estimate subject to this condition is: $c_i = \frac{1}{n}$, where i = 1, ..., n.
- 2. (a) (10 points) Let X be a normally distributed random variable, i.e. $X \sim N(\mu, \sigma^2)$. Show that:

$$E\left[e^{\alpha X}1_{l \leq X \leq h}\right] = e^{\alpha \mu + \frac{1}{2}\alpha^2\sigma^2} \left\{ N\left(\frac{h - \left(\mu + \alpha\sigma^2\right)}{\sigma}\right) - N\left(\frac{l - \left(\mu + \alpha\sigma^2\right)}{\sigma}\right) \right\}$$

where $1_{l \leq X \leq h} = 1$ for $l \leq X \leq h$, and $1_{l \leq X \leq h} = 0$ otherwise; and α , l, h are some arbitrary constants.

- (b) (5 points) If $Y = e^X$, then the random variable Y is said to be lognormally distributed. Find the mean, μ_Y , and variance, σ_y , of Y.
- (c) (5 points) Based on the results obtained above, find:

$$E\left[\left(Y-K\right)1_{Y>K}\right]$$

for some arbitrary constant K.

3. OLS (ordinary least-squares method) as a technique in fitting the best straight line $Y_i = b_0 + b_1 X_i$ to a sample of X and Y observations involves minimizing the sum of squared (vertical) deviations of points from the line:

$$\min\sum\left(Y_i-\hat{Y}_i\right)^2$$

where Y_i refers to the actual observations, and \hat{Y}_i refers to the corresponding fitted values, so that $Y_i - \hat{Y}_i = e_i$ are the residuals.

(a) (5 points) Derive the following normal equations:

$$\sum Y_i = nb_0 + \hat{b}_1 \sum X_i$$

$$\sum X_i Y_i = \hat{b}_0 \sum X_i + \hat{b}_1 \sum X_i^2$$

where n is the number of observations and \hat{b}_0 and \hat{b}_1 are estimators of the true parameters b_0 and b_1 .

- (b) (5 points) Hence, solve for \hat{b}_1 and \hat{b}_0 .
- (c) (5 points) What is meant by an unbiased estimator? How is bias defined?
- (d) (5 points) What is meant by the best linear unbiased estimator (BLUE)? Why is this important?

考試科目然行行學力 所别金南电系/金南电管主里然血 考試時間 ユ月23日(六)第二 節

4. The Pareto distribution has been widely used as a model in economics for a decaying function with a slowly decaying tail:

$$f(x|x_0,\theta) = \theta x_0^{\theta} x^{-\theta-1}, \ x \ge x_0, \ \theta > 1$$

Assume that $x_0 > 0$ is given and that X_1, \dots, X_n is an i.d.d. sample.

- (a) (5 points) Find the MME (method of moments estimate) of θ .
- (b) (10 points) Find the MLE (maximum likelihood estimator) of θ .
- (c) (5 points) Find the asymptotic variance of the MLE.
- (d) (5 points) Find a sufficient statistic for θ .
- 5. Let X be a binomial random variable with n trials and probability p of success.
 - (a) (5 points) What is the generalized likelihood ratio for testing

$$H_0: p=0.5$$
 against $H_A: p \neq 0.5$

- (b) (5 points) Show that the test rejects for large values of |X n/2|.
- (c) (5 points) Using the null distribution of X, show how the significance level corresponding to a rejection region |X n/2| > k can be determined.
- (d) (5 points) If n = 10 and k = 2, what is the significance level of the test?

