	考試科目公言十段	所 別	知過多	考試時間	2月24日(日)第	三節
--	----------	-----	-----	------	-----------	----

1. A random sample is drawn from the density

(20%)

$$f(x;\theta) = \theta \left(\frac{x}{2}\right)^{\theta}$$
.

Five observations are 1, 1.5, 0.6, 0.8 and 3. Find the maximum likelihood estimate for θ .

2. $\{X_1, \dots, X_{100}\}$ are i.i.d. random variables with $N(\mu_0, 4)$.

(30分)

- (a) If the null hypothesis is $\mu_0 = 0$, derive the test statistic and its null distribution.
- (b) Please derive the distribution of the test statistic in (a) if $\mu_0 = -2$. In addition, with significance level 5%, compute the type II error and the power of the test. Note: $\Phi(1.96) = 0.975$.
- 3. For a linear probability model

(20分)

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + e_i,$$

where y_i is an indicator variable and i.i.d. with mean $E(y_i) = p_i$ and variance $var(y_i) = p_i(1 - p_i)$. Since the model suffers from heteroskedasticity, we can apply a generalized least square procedure. How do you obtain the generalized least square estimates?

4. Consider the following model

(30分)

$$y_t = c_0 + y_{t-1} + e_t$$

with e_t being i.i.d. with mean zero and variance σ_e^2 . Let $y_0 = 0$. Compute the expectation, variance, autocovariance and autocorrelation of y_t .